Section 8.2: Integration by Parts

When you finish your homework, you should be able to...

- $\pi\,$ Use the integration by parts technique to find indefinite integral and evaluate definite integrals
- $\pi\,$ Use the tabular method to organize an integral requiring integration by parts
- π Recognize trends and establish guidelines for integrals requiring integration by parts

Warm-up:

1. Differentiate with respect to the independent variable.

a.
$$f(x) = \arcsin 5x$$

$$b. \quad y = \ln(5x+1)$$

c.
$$r(\theta) = \tan \theta$$

2. Find the indefinite integral.

a.
$$\int \frac{\arctan x}{x^2 + 1} dx$$

b.
$$\int \frac{(\ln x)^3}{x} dx$$

c.
$$\int x\sqrt{5-x}dx$$

. Evaluate the definite integral.

	by	_ is based on the formula for
the	of a	and is useful for
	involving products of	of algebraic and
	functions.	

Consider the following product of two functions of x that have continuous

THEOREM: INTEGRATION BY PARTS

If <i>u</i> and <i>v</i> are functions of <i>x</i> and have	_derivatives,
This technique turns a super complicated integral into	ones. The
than Oh yeahand PRACTICE A OF PRO	BLEMS!!!
Okaylet's look at the "" types of Integration by Parts (3	IBP) problems.
Which types of expressions do not have integrations formulas?	gration
1.	

2.

EXAMPLE 1: Find the following indefinite integrals.

a. $\int 4x^2 \ln x dx$

b. $\int \arcsin x dx$

When you don't have a		factor, you need to play			
around with the		. Oftentimes it works out to let			
be the factor whose		is a simpler			
	than <i>u</i> . Then	would be the more			
	remaining factor	. Use!!!			
There is a lot of	and	especially at			
first©					
**Remember:	_ ALWAYS includes	!			

EXAMPLE 2: Find the indefinite integral.

a. $\int \frac{6x}{e^{7x}} dx$

b.
$$\int x\sqrt{5-x}dx$$

c. $\int x \sec^2 x dx$

Sometimes, you need to use IBP		_ times. You may even
need to	_like	(yes, you can do
that)!		

EXAMPLE 3: Find the indefinite integral.

a.
$$\int e^{-x} \cos 3x dx$$

b. $\int x^2 e^{-x} dx$

THE TANZALIN (AKA TABULAR) METHOD is a way of organizing an integration by parts problem. Let's rework the last example using this method.

INTEGRALS	ALTERNATE	SAME-COLOR
	SIGNS	PRODUCTS
dv		
	INTEGRALS	INTEGRALS ALTERNATE SIGNS dv I I I I I I I I I I I I I I I I I I I

Let's try to bring this all together ...

In general, use the following choice for u, in order.

1.
2.
3.
**When you have
$$\int e^{ax} \cos bx dx$$
 or $\int e^{ax} \sin bx dx$, let _____ and let _____ or let _____.

**To evaluate a definite integral, first find the ______ integral and then back substitute.

EXAMPLE 5: Find the indefinite integral or evaluate the definite integral.

a. $\int_0^1 x \arcsin x^2 dx$

b.
$$\int \frac{x^3 e^{x^2}}{(x^2+1)^2} dx$$

Section 8.3: Trigonometric Integrals

When you finish your homework, you should be able to...

- $\pi\,$ Find indefinite integrals and evaluate definite integrals involving the sine and cosine functions which are raised to positive powers
- π Find indefinite integrals and evaluate definite integrals involving the secant and tangent functions which are raised to positive powers
- π Use trigonometric identities to find indefinite integral and evaluate definite integrals involving the sine and cosine functions

Warm-up 1: Simplify.

a.
$$1 - \sin^2 x$$

b. $1 + \tan^2 x$
c. $\frac{1 - \cos 2x}{2}$
d. $\frac{1 + \cos 2x}{2}$

Warm-up 2: Complete the statement.

a. If $u = \sin 2x$, then du =______. b. If $u = \cos 4x$, then du =______. c. If $u = \tan x$, then du =______. d. If $u = \sec 6x$, then du =______.

EXAMPLE 1: Find the indefinite integral.

a.
$$\int \frac{\cos x}{\sqrt{\sin x}} dx$$

b. $\int \sin^3 x \cos^2 x dx$

So we discovered that if the sine portion of the integrand has an _____,

positive integer as a power and the cosine portion has any other power, then we

save	sine factor	', and		the others to
------	-------------	--------	--	---------------

factors. Then and	•
-------------------	---

c. $\int \sin^4 2x \cos^3 2x dx$

So we discovered that if the	portion of the integrand has an

odd, positive integer as a power and the sine portion has any other power, then we

save	cosine factor	, and		the	others	to
------	---------------	-------	--	-----	--------	----

_ factors. Then _____ and _____

d. $\int \sin^4 5x dx$

So we discovered that if only one sine or cosine factor is in the integrand and

has an _____, positive integer as a power, you use the _____

_____ formula

_____ or _____ until you can use

basic integration formulas. What should we do if both the sine and cosine are

raised to even, positive powers?

e. $\int \sec^4 x \tan^3 x dx$

So we discovered that if the ______ portion of the integrand has an

even, positive integer as a power and the tangent portion has any other exponent,

then we save	_factors,	and	convert	the	rest	to
--------------	-----------	-----	---------	-----	------	----

factors.	Then	anc	<u>ا</u> ؛
----------	------	-----	------------

f. $\int \sec^3 5x \tan^3 5x dx$

So we discovered that if t	he	_ portion of the integrand has an
odd, positive integer as a p	power and the secan	t portion has any other exponent,
then we save a		factor, and convert the
rest to	factors. Then	and

g. $\int \tan^4 x dx$

So we discovered that if there is only a	factor raised to a positive,
power, rewrite as two _	factors, one of which is
, convert the other t	TO
minus, and then	and

h. $\int \sec^3 x dx$

So we discovered that if there is only a ______ factor raised to a positive,

_____ power, we need to use _____ by _____.

______ factors. Then play around with identities.

EXAMPLE 2: Find the indefinite integral.

a.
$$\int \frac{\tan^2 x}{\sec^5 x} dx$$

b.
$$\int \frac{\sin^2 x - \cos^2 x}{\cos x} dx$$

PRODUCT TO SUM IDENTITIES

If		occur in the integral,	use the following
identities.			
	$\sin mx \sin nx = ___$		
	$\sin mx \cos nx = __$		
	$\cos mx \cos nx = __$		
You do not ne	eed to memorize the	ese identities.	

EXAMPLE 3: Find the indefinite integral.

 $\int \sin 7x \cos 4x dx$

EXAMPLE 4: Find the area of the region bounded by the graphs of $y = \cos^2 x$, $y = \sin x \cos x$, $x = -\frac{\pi}{2}$, and $x = \frac{\pi}{4}$.

Section 8.4: Trigonometric Substitution

When you finish your homework, you should be able to...

- π Find indefinite integrals using trigonmometric substitution
- π Evaluate definite integrals using trigonmometric substitution

Warm-up 1: Consider the definite integral $\int_{-2}^{2} \sqrt{4-x^2} dx$. Do you have the

skills to evaluate this definite integral? _____!

What tool did we use in Calculus I? _____!

Warm-up 2: Complete the figures.

a. $u = a \sin \theta$

So,
$$\sqrt{a^2-u^2} =$$

for
$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
.

b. $u = a \tan \theta$

So,
$$\sqrt{a^2 + u^2} =$$

for
$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$
.

c. $u = a \sec \theta$

So,
$$\sqrt{u^2-a^2} =$$

$$\sqrt{u^2 - a^2} = \begin{cases} & \text{for } u > a, \text{ where } 0 \le \theta < \frac{\pi}{2} \\ & \text{for } u < -a, \text{ where } \frac{\pi}{2} < \theta \le \pi. \end{cases}$$

NOTE: These are the same intervals over which the ______, ______, and ______are defined. The restrictions on ______ ensure that the function used for the substitution is _______to-____. EXAMPLE 1: Evaluate the definite integral.

 $\int_{-2}^2 \sqrt{4-x^2} dx$

So we discovered that if the integrand has a _____ and no basic

integration rules, _____, or regular _____ integrals

work, we use the substitution _____.

EXAMPLE 2: Find the indefinite integral.

a.
$$\int \frac{\sqrt{x^2 - 16}}{x} dx$$

So we discovered that if the integrand has a ______ and no basic

integration rules, _____, or regular _____ integrals

work, we use the substitution _____.

b.
$$\int \frac{1}{x\sqrt{9x^2+1}} dx$$

So we discovered that if the integrand has a _____ and no basic

integration rules, _____, or regular _____ integrals

work, we use the substitution _____.

c.
$$\int \frac{x^2}{\sqrt{2x-x^2}} dx$$

EXAMPLE 3: Evaluate the definite integral.

$$\int_{0}^{\sqrt{3}/2} \frac{1}{\left(1 - t^2\right)^{5/2}} dt$$

Section 8.5: Partial Fractions

When you finish your homework you should be able to...

- π Review how to decompose rational expressions into partial fractions
- π Utilize partial fractions to find indefinite integrals
- π Utilize partial fractions to evaluate definite integrals

Warm-up: Find the indefinite integral.

$$\int \frac{x^2 - x - 1}{x - 1} dx$$

(CASE 1) Q HAS ONLY NONREAPEATED LINEAR FACTORS

Under the assumption that Q has only polynomial Q has the form	linear factors, the
where no two of the numbers case, the partial fraction decomposition of	are equal. In this is of the form
where the numbers	are to be determined.

Example 1: Write the partial fraction decomposition of the rational expression in the integrand, and find the indefinite integral.

 $\int \frac{2}{9x^2 - 1} dx$

(CASE 2) Q HAS REAPEATED LINEAR FACTORS

If the polynomial Q has a		_linear factor, say
,,,,	, n is an	, then, in the
partial fraction decomposition of _		we allow for the terms
where the numbers	α	re to be determined.

Example 2: Write the partial fraction decomposition of the rational expression in the integrand, and find the indefinite integral.

 $\int \frac{5x-2}{\left(x-2\right)^2} dx$

(CASE 3) $\ensuremath{\mathcal{Q}}$ CONTAINS A NONREAPEATED IRREDUCIBLE QUADRATIC FACTOR

If Q contains a	irreducible quadratic factor of the form
	, then, in the partial fraction decomposition of
, allo	w for the term
where the numbers _	are to be determined.

Example 3: Write the partial fraction decomposition of the rational expression in the integrand, and find the indefinite integral.

 $\int \frac{6x}{x^3 - 8} dx$
(CASE 4) Q CONTAINS A REAPEATED IRREDUCIBLE QUADRATIC FACTOR

If the polynomial Q contains a	irreducible quadratic
factor of the form,	, <i>n</i> is an
, then, in the partial fraction decom	position of,
allow for the terms	
where the numbers	_ are to be determined.

Example 4: Write the partial fraction decomposition of the rational expression in the integrand, and evaluate the definite integral.

$$\int_{0}^{1} \frac{x^{3}}{\left(x^{2} + 16\right)^{2}} dx$$

Example 5: Find the indefinite integral.

 $\int \frac{5\cos x}{\sin^2 x + 3\sin x - 4} dx$

Section 8.7: Indeterminate Forms and L'Hôpital's Rule

When you finish your homework you should be able to...

- π Recognize all indeterminate forms
- π Apply L'Hôpital's Rule to evaluate limits
- $\pi\,$ Manipulate expressions so that L'Hôpital's Rule may be applied to evaluate limits

WARM-UP: Find the limit. It is okay to write $\pm \infty$ as your answer.

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

2.
$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^2 - 1}$$

3.
$$\lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$$

 $4. \lim_{x \to \pi^+} \csc x$

5. $\lim_{x \to 0^+} \ln x$

6. $\lim_{x \to \infty} \arctan x$

7. $\lim_{x \to 0} \frac{\sin 4x}{x}$

8.
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x + x \cos x}$$

What indeterminate form did you encounter in some of these problems?

What skills did you use to get these expressions into a determinate form?:

1	
Т	•

- 2.
- 3.

L'Hôpital's Rule

Suppose f and g are differentiable and $g'(x) \neq 0$ near a (except possible at a). Suppose that $\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0$ or that $\lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} g(x) = \pm \infty$ meaning that we have an ______ form of _____.
Then

If the limit on the right side ______ or is _____ or _____ or _____.

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

*What should we check before applying L'Hôpital's Rule?

Example 1: Determine if L'Hôpital's Rule can be used to evaluate the limit. If so, apply L'Hôpital's Rule to evaluate the limit.

a.
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

b.
$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^2 - 1}$$

c.
$$\lim_{x \to 0} \frac{\sin 4x}{x}$$

d.
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x + x \cos x}$$

e.
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

Indeterminate Forms

We already know that and _	rej	present	2 types of
forms. There are a	also indeterm	inate _	
, and			
Indeterminate Products occur when th	ie limit of 1 _		approaches
and the other factor approaches			Suppose
and		. If	_ prevails, the
result of the limit of the	will be		If is the
victor, the of the product	t will be	If †	hey decide to sign
a, the answer will be	some		
number. To find out, see if you can		_ the di	fference into a

Example 2: Evaluate the limit.

a. $\lim_{x\to\infty}\sqrt{x}e^{-x/2}$

b. $\lim_{x \to 0^+} \sin x \ln x$

Indeterminate Differences occur when both limits approach _____.

Suppose	and		If	prevails, the
result of the limit	of the	will be	If	is the
victor, the	of the product	will be I	If they dec	ide to sign
α	_, the answer will be s	ome	number	r. To find out,
see if you can	the diff	ference into a _		by using a
	, _		, or _	
out a				
Example 3: Evalua	te the limit.			
a. $\lim_{x\to 0} (\csc x - \cos x)$	$\operatorname{ot} x$)	b. $\lim_{x\to 1^+} \left[\ln \left(\frac{1}{x} \right) \right]$	$n(x^7-1)-1$	$n(x^5-1)$

Indeterminate	Powers occur when	There are 3
indeterminate f	orms that arise from this t	type of limit.
1	and	This yields the inderminate
form		
2	and	This yields the inderminate
form		
3	and	This yields the inderminate
form		
To find these ty	vpes of limits, see if you ca	n take the
	::	
or write the fun	ction as an	:

Example 4: Evaluate the limit.

a. $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{bx}$ b. $\lim_{x\to 0^+} x^{\sqrt{x}}$

Section 8.8: Improper Integrals

When you finish your homework you should be able to...

- π Recognize when a definite integral is improper
- π Use your integration and limit techniques to evaluate improper integrals

WARM-UP: Consider the function $f(x) = \frac{2}{x^3}$.

1. Graph the function.

2. Find the limits. It is okay to write $\pm \infty$ as your answer.

a.
$$\lim_{x \to 0^+} \frac{2}{x^3}$$

- b. $\lim_{x \to \infty} \frac{2}{x^3}$
- 3. Evaluate the definite integral.

$$\int_{1}^{b} \frac{2}{x^{3}} dx$$

Let's put some stuff together ©

Recall the if a function is		on the interval	
the	_ integral is equal to the	unc	der the
and bounde	d by the	Also rememl	per that a
function is said to have an ir	nfinite	atv	vhen, from
the or the lef	t,		

TYPE 1: INFINITE INTERVALS

Now consider the following definite integral.

$$\int_{1}^{\infty} \frac{2}{x^3} dx$$

Example 1: If possible, evaluate the following definite integrals and ascertain if they are convergent or divergent.

TYPE 2: DISCONTINUOUS INTEGRANDS

Now consider the following definite integral.

$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx$$

Definition: Improper Integrals With Infinite Discontinuities

Example 2: If possible, evaluate the following definite integrals and ascertain if they are convergent or divergent.

$$a. \quad \int_3^6 \frac{dx}{\sqrt{36-x^2}}$$

b.
$$\int_{1}^{\infty} \frac{dx}{x \ln x}$$

Consider $\int \frac{dx}{x^p}$, where p is a real number. Let's find the indefinite integral on

1.
$$p = 0$$
 2. $p \neq 1$ **3**. $p = 1$

Example 3: Determine all values of p for which the improper integral converges.

$$\int_1^\infty \frac{dx}{x^p}$$

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \begin{cases} \frac{1}{p-1}, & p > 1\\ \text{diverges, } p < 1 \end{cases}$$

Example 4: If possible, evaluate the following definite integrals and ascertain if they are convergent or divergent.

a.
$$\int_1^\infty \frac{dx}{x^{1/2}}$$

b.
$$\int_1^\infty x^{-3} dx$$

9.1: Sequences

When you finish your homework you should be able to...

- π Identify the terms of a sequence, write a formula for the *n*th term of a sequence, and ascertain whether a sequence converges or diverges.
- π Use properties of monotonic sequences and bounded sequences.

WARM-UP: Consider the function $f(x) = \sqrt{x}$.

1. Sketch the graph of the function.

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

5. Sketch the graph of the sequence.

Definition of the Limit of a Sequence

Let <i>L</i> be a real number. The written as	of a sequence	is,
$\lim_{n\to\infty}a_n=L$		
if for $ \varepsilon > 0$, there exists $ M > 0 $ such that $ig a_{\!_n}$	$-L < \varepsilon$ whenever $n > l$	M . If the
limit L exists, then the sequence	If the limit c	loes not
exist, then the sequence		
Looking at the two graphs we sketched, as	it looks like	

_____. So, we would say the $\lim_{n o \infty} a_n$ _____. and _____.

EXAMPLE 1: Write the first five terms of the sequence.

a.
$$a_n = \frac{3n}{n+4}$$
 b. $a_1 = 6, a_{k+1} = \frac{1}{3}a_k^2$

FACTORIALS are factors which decrease by one. So 5!, read as "five factorial" is

5! = ______ = _____. We will be working with unknown factorials.

In general, *n*! = _____, and 0! = _____.

EXAMPLE 2: Simplify the ratio of factorials.

a. $\frac{n!}{(n+2)!}$ b. $\frac{(2n+2)!}{(2n)!}$

EXAMPLE 3: Find the *n*th term of the sequence.

a.
$$1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots$$

b. $\frac{1}{2 \cdot 3}, \frac{1}{3 \cdot 4}, \frac{1}{4 \cdot 5}, \frac{1}{5 \cdot 6}, \dots$

Theorem: Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that

If $\{a_n\}$ is a sequence such that $f(n) = a_n$ for every positive integer *n*, then

EXAMPLE 4: Find the limit of the sequence, if it exists.

a.
$$a_n = 6 + \frac{2}{n^2}$$
 b. $a_n = \cos \frac{2}{n}$

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

Theorem: Properties of Limits of Sequences

EXAMPLE 5: Determine the convergence or divergence of the sequence with the given *n*th term. If the sequence converges, find its limit.

a.
$$a_n = \frac{1 + (-1)^n}{n^2}$$

b.
$$a_n = \frac{\sqrt[3]{n}}{\sqrt[3]{n+1}}$$

$$\mathbf{c.} \quad a_n = \frac{(n-2)!}{n!}$$

Absolute Value Theorem

For the sequence $\{a_n\}$, if $\lim_{n\to\infty} |a_n| = 0$ then _____.

Squeeze Theorem for Sequences

EXAMPLE 6: Show that the sequence converges and find its limit.

$$c_n = \left(-1\right)^n \frac{1}{n!}$$

Definition: Monotonic Sequence

Definition: Bounded Sequence

1. A sequence $\{a_n\}$ is above when there is a real number
such that $a_n \leq M$ for all The number is called an
of the sequence.
2. A sequence $\{a_n\}$ is bounded when there is a real number
such that $N \leq a_n$ for all The number is called a
bound of the sequence.
3. A sequence is when it is bounded
andbelow.

Theorem: Bounded Monotonic Sequences

If a sequence {*a_n*} is ______, it _____.

EXAMPLE 7: Determine whether the sequence with the given *n*th term is monotonic and whether it is bounded.

 $a_n = \frac{\cos n}{n}$

EXAMPLE 8: Fibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair which becomes productive at age 2 months. If we start with one newborn pair, how many pairs of rabbits will we have in the *n*th month?

9.2: Series and Convergence

When you finish your homework you should be able to...

- π Understand and represent a convergent infinite series.
- π Use properties of infinite geometric series.
- π Use the *n*th term test for <u>divergence</u>.

We spent the last section checking out ______, and ascertaining

whether a given sequence , a_n , _____ or _____

as ______ of a sequence are

represented as a _____ or ____, which need not be ordered. There are

finite and ______ sequences. What if we were interested in

_____a sequence? If we are interested in summing a finite number,

say n, of the ______ of a sequence, we would be finding the _____

_____. If we are interesting in finding the sum of an

infinite sequence, if it exists, we would be finding an ______ sum, called

an infinite _____, or just a _____.

Our main interest will be to ascertain whether a series ______ or

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 1: Consider the sequence we found above.

- a. Write the first five terms, and the *n*th term of the sequence.
- b. Sum the first five terms.
- c. Represent this 5^{th} partial sum as a summation.
- d. Find the limit of the sequence.

e. Find an expression for the *n*th partial sum.

f. What must the limit of this expression equal?

Definition: Convergent and Divergent Series

For the infinite series $\sum_{n=1}^{\infty}a_n$,	The sum is	
If the sequence of partial sums $\sum_{n=1}^{\infty} a_n$ converges. The limit S	is called the of the _	then the series
If $\{S_n\}$ diverges, then the set	ries	
So from our first example, \mathcal{O} –	, and this ser	ies
since th	ne sum _	
GEOMETRIC SERIES:	pometric Series	
A geometric series with	converges to the sum	
when	. Otherwise, for	, the series

diverges.

EXAMPLE 2: Express the number as a ratio of integers.

0.46
EXAMPLE 3: Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ is convergent and find its sum.

EXAMPLE 4: Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

NOTE: The series in example 4 is called a ______ series.

Theorem: Properties of Infinite Series

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series, and let A, B, and c be real numbers. If $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$, then the following series converge to the indicate sums. 1. $\sum_{n=1}^{\infty} ca_n =$ _____ 2. $\sum_{n=1}^{\infty} (a_n + b_n) =$ _____ 3. $\sum_{n=1}^{\infty} (a_n - b_n) =$ _____

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 5: Determine the convergence or divergence of the series. If the series converges, find its sum.

$$\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$$

Theorem: Limit of the nth Term of a Convergent Series

Theorem: nth Term Test for Divergence

EXAMPLE 6: Determine the convergence or divergence of the series. Explain.

b.
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$$

c.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$$

EXAMPLE 7: Find all values of x for which the series converges. For these values of x, write the sum as a function of x.

EXAMPLE 8: A ball is dropped from a height of 16 feet. Each time it drops h feet, it rebounds 0.81h feet. Find the total distance traveled by the ball.

9.3: The Integral Test, P-Series, and Harmonic Series

When you finish your homework you should be able to...

- $\pi\,$ Use the Integral Test to ascertain whether an infinite series converges or diverges.
- π Determine whether a *p*-series converges or diverges.
- π Use properties of harmonic series.

WARM-UP: Determine whether the improper integral converges or diverges.

$$1. \quad \int_1^\infty \frac{\ln x}{x^3} dx$$

$$2. \int_1^\infty \frac{1}{3^x} dx$$

$$3. \quad \int_1^\infty \frac{1}{\sqrt{x}} dx$$

Theorem: The Integral Test

If f is, $x \ge 1$ and $a_n = f(n)$, then	, and	for
Either both	or both	

*****NOTE:** Our interest is whether the series converges or diverges as ______, so the index of the summation can start at some integer _____ as opposed to a_____ when we apply the integral test.

EXAMPLE 1: Determine the convergence or divergence of the series. Explain.

$$a. \quad \sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

$$\mathsf{b.} \ \sum_{n=1}^{\infty} \frac{n}{n^4 + 2n^2 + 1}$$

P-Series and Harmonic Series

A harmonic series is the of sounds represented by
waves in which the of each sound is an
multiple of the frequency. Pythagoras and his students
discovered this relationship between the and the of the
vibrating string. The most beautiful harmonies seemed to correspond with the
simplest of numbers. Later mathematicians developed
this idea into the series, where the in the
harmonic series correspond to the node on a string that
produce of the fundamental frequency. So, is
the fundamental frequency, is
times the fundamental frequency, and so on. In music, strings of the same, and whose
form a harmonic series, produce tones. A
general harmonic series is of the form
The harmonic series is a special case of the, where

Theorem: Convergence of p-Series

The p-series			
	for	_, and	_ for

EXAMPLE 2: Determine the convergence or divergence of the series. Explain.

$$a. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

b.
$$1 + \frac{1}{\sqrt[5]{4}} + \frac{1}{\sqrt[5]{9}} + \frac{1}{\sqrt[5]{16}} + \frac{1}{\sqrt[5]{25}} + \cdots$$

9.4: Series Comparison Tests

When you finish your homework you should be able to...

- $\pi\,$ Use the Direct Comparison Test to ascertain whether an infinite series converges or diverges.
- $\pi~$ Use the Limit Comparison Test to ascertain whether an infinite series converges or diverges.

WARM-UP: Determine whether the series converges or diverges.

$$1. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

Our lests So Far		
nth Term Test for	If	, the series
If	, we need to	o further
!!!		
Geometric Series is of the form	If	/
the series and	its is	
Otherwise, the series diverges.		
Telescoping Series. Requires		
decomposition. The is	the sum of the terms	which do not
out plus		
p-Series is of the form	If	, the series
If	, 1	the series
·		
The Integral Test requires that	is	, continuous, and
for $x \ge 1$, and	$f(n) = a_n$ for all n .	[f
converges, conve	rges. Otherwise,	diverges.

Theorem: The Direct Comparison Test

EXAMPLE 1: Determine the convergence or divergence of the series. Explain.

a.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$

b.
$$\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$$

Theorem: The Limit Comparison Test

NOTE: When choosing your comparison, you can disregard all but the

_____ powers of _____. So, if we are testing
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{5n^2+2}$$
 , our

comparison series would be ______ = _____.

Proof:

EXAMPLE 2: Determine the convergence or divergence of the series. Explain.

a.
$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 2n^2 + 1}$$

$$b. \quad \sum_{n=0}^{\infty} \frac{1+\sin n}{10^n}$$

9.5: Alternating Series

When you finish your homework you should be able to...

- $\pi\,$ Use the Alternating Series Test to ascertain whether an infinite series converges or diverges.
- $\pi\,$ Use the Alternating Series Remainder to approximate the sum of an alternating series.
- $\pi\,$ Classify a convergent series as conditionally convergent or absolutely convergent.

WARM-UP: Determine whether the series converges or diverges.

 $\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(2\right)^{n+1}}$

Theorem: Alternating Series Test

NOTE: The second condition can be modified to require that ______ for all _____ greater than some integer _____.

EXAMPLE 1: Determine the convergence or divergence of the series. Explain.

a.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2)^{n+1}}$$

b.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\ln\left(n+1\right)}$$

c.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n^2}{n^2 + 4}$$

e.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)}{1 \cdot 4 \cdot 7 \cdot 10 \cdots (3n-2)}$$

Theorem: Alternating Series Remainder

EXAMPLE 2: Approximate the sum of the series by using the first six terms.

EXAMPLE 3: Determine the number of terms required to approximate the sum of the series with an error of less than 0.001.

Theorem: Absolute Convergence

Which of our examples would be an example of this theorem?

Definition of Absolute and Conditional Convergence

1. The series $\sum a_n$ is converges.	convergent when
2. The series $\sum a_n$ is	convergent when
converges but diverges.	

EXAMPLE 4: Determine whether the series converges absolutely or conditionally, or diverges.

b.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \arctan n$$

c.
$$\sum_{n=1}^{\infty} \frac{\sin\left[\left(2n+1\right)\frac{\pi}{2}\right]}{n}$$

9.6: The Ratio and Root Tests

When you finish your homework you should be able to...

- $\pi\,$ Use the Ratio Test to ascertain whether an infinite series converges or diverges.
- $\pi\,$ Use the Root Test to ascertain whether an infinite series converges or diverges.
- π Review Tests for convergence and divergence of an infinite series.

Theorem: The Ratio Test

Let $\sum a_n$ be a series with	terms.
1. The series $\sum a_n$ converges	when
2. The series $\sum a_n$ diverges when	or
3. The Ratio Test is	when

EXAMPLE 1: Determine the convergence or divergence of the series using the Ratio Test.

a.
$$\sum_{n=0}^{\infty} \left(\frac{2}{e}\right)^n$$

b.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n+2)}{n(n+1)}$$

$$\mathsf{d.} \ \sum_{n=0}^{\infty} \frac{\left(n!\right)^2}{\left(3n\right)!}$$

Theorem: The Root Test

1. The series $\sum a_n$ converges	when
2. The series $\sum a_n$ diverges when	or
3. The Root Test is	when

EXAMPLE 2: Determine the convergence or divergence of the series using the Root Test.

$$a. \quad \sum_{n=1}^{\infty} \frac{1}{n^n}$$
b.
$$\sum_{n=1}^{\infty} \left(\frac{n-2}{5n+1} \right)^n$$

c.
$$\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^n$$

d.
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{(n^n)^2}$$

NOW IT'S UP TO YOU!!! DETERMINE WHETHER THE FOLLOWING INFINITE SERIES CONVERGE OR DIVERGE

1.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)}{2 \cdot 5 \cdot 8 \cdot 11 \cdots (3n-1)}$$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

$$2. \quad \sum_{n=1}^{\infty} \frac{\left(-1\right)^n \sqrt{n}}{n+1}$$

Step 2: Run the test.

$$3. \ \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3 + 3n}}$$

Step 2: Run the test.

4.
$$\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdots (2n+1)}{18^n n! (2n-1)}$$

Step 2: Run the test.

Step 2: Run the test.

Step 2: Run the test.

7.
$$\sum_{n=1}^{\infty} \frac{5^n - 1}{6^n - 1}$$

Step 2: Run the test.

Step 2: Run the test.

9.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

Step 2: Run the test.

10.
$$\sum_{n=1}^{\infty} \frac{2^n}{4n^2 - 1}$$

Step 2: Run the test.

9.7: Taylor Polynomials

When you finish your homework you should be able to...

- $\pi\,$ Find Taylor and Maclaurin polynomial approximations of elementary functions.
- $\pi~$ Use the remainder of a Taylor polynomial.

Some uses of the Taylor series for analytic functions include:

•	The	of the series can be used o	as
		of the entire function. Keep in	n mind that you
	need a sufficient amount of	:	
•		and	_ of power series
	is	_since it can be done	by term.
•	oper	rations can be done on the	
	series	For example,	formula
	follows from Taylor series	for	
	and	functions. This result is imp	portant in the field
	of an	alysis.	
•		_using the first few terms of	a Taylor series can
	make otherwise	problems possible for	a restricted

domain.	This is	often	used in	
---------	---------	-------	---------	--

To find a		_function _	that			
another function, we	choose a	number	_ in the		of	
at which	This	approximat	ing		is said to	
be	_about	or		_ at	. The evil	
plan is to find a polynomial whose looks like the graph of						
this point.	. If we rea	quire that t	he	of th	e polynomial	
function is the	as the	e slope of th	1e	_ at	_, then we	
also have	L	Jsing these [.]	two requiremen	its we co	in get a	
appro.	ximation c	of				

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 1: Consider $f(x) = \frac{x}{x+1}$.

a. Find a first-degree polynomial function $P_1(x) = a_0 + a_1 x$ whose value and slope agree with the value and slope of f at x = 0.

X	-0.8	-0.2	-0.1	0	0.1	0.2	1.0
x							
$\overline{x+1}$							
$P_1(x)$							

b. Now find a second-degree polynomial function $P_2(x) = a_0 + a_1 x + a_2 x^2$ whose value and slope agree with the value and slope of f at x = 0.

X	-0.8	-0.2	-0.1	0	0.1	0.2	1.0
X							
$\overline{x+1}$	-4	-0.25	-0.1111	0	0.0909	0.16667	0.5
$P_2(x)$							

c. Let's go for a third-degree polynomial function $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ whose value and slope agree with the value and slope of f at x = 0.

X	-0.8	-0.2	-0.1	0	0.1	0.2	1.0
X							
$\overline{x+1}$	-4	-0.25	-0.1111	0	0.0909	0.16667	0.5
$P_3(x)$							

	Definition	of	<i>n</i> th	Taylor	and	<i>n</i> th	Maclaurin	Pol	ynomial
--	------------	----	-------------	--------	-----	-------------	-----------	-----	---------

If f has n derivatives at c , then the	e polynomial			
is called the	_polynomial for at			
If, then				
is also called the	polynomial for			
Remainder of a Taylor Polynomial				

To tł	1e	of	^c approximating a function
-------	----	----	---------------------------------------

value _____ by the Taylor polynomial _____, we use the concept of a

•

EXAMPLE 2: Consider the function $f(x) = x^2 \cos x$.

a. Find the second Taylor polynomial for the function $f(x) = x^2 \cos x$ centered at π .

b. Approximate the function at $x = \frac{7\pi}{8}$ using the polynomial found in part a.

Taylor's Theorem

If a function f is different then, for each x in I , t	rentiable through order $n+1$ in here exists z between x and c	n an interval I containing c , c such that
where		
A	_ of this theorem is that	
where	is the	_ value of
between and		
For we have		

Does this look familiar?

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 3: Use Taylor's Theorem to obtain an upper bound for error of the approximation. Then calculate the exact value of the error.

$$e \approx 1 + 1 + \frac{1^2}{2!} + \frac{1^3}{3!} + \frac{1^4}{4!} + \frac{1^5}{5!}$$

EXAMPLE 4: Determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001.

 $\cos(0.1)$

9.8: Power Series

When you finish your homework you should be able to...

- π Find the radius and interval of convergence of a power series.
- π Determine the endpoint convergence of a power series.
- π Differentiate and integrate a power series.

WARM-UP: Find the sixth-degree Maclaurin polynomial for $f(x) = e^x$.

This enables us to be able to	the function			
near We found	out that the higher t	he	_ of the	
approximating	, the better the app	proximation be	ecomes.	
In this section, you'll see that several important			can be	
represented	_by	series.		

Definition of Power Series

If <i>x</i> is a variable, then an i	infinite series of the fo	orm	
is called a constant.	series	at, where is a	
If a power series is form	at, tl	he power series will be of the	

EXAMPLE 1: Find the power series for $f(x) = e^x$, centered at x = 0.

Radius and Interval of Convergence

A power serie	s in can be thought of	as a	of
The series	of is the Every powe	of all for er series converges (which the power at its
Therefore, power series	is always in the can take on any one of the f	of ollowing forms:	The domain of a
	a		•
	the of	numbers	*

Endpoint Convergence

Each	must be	for	or
	This results in	possible forms an	
of	can take on.		
0	→ <u> </u>		
← →	← →	← → ←	

Example 2: Find the radius and interval of convergence (including a check for convergence at the endpoints) of the following power series.

a.
$$\sum_{n=0}^{\infty} (2x)^n$$

b.
$$\sum_{n=0}^{\infty} \frac{(3x)^n}{(2n)!}$$

c.
$$\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1)4^{n+1}}$$

Theorem: Properties of Functions Defined by Power Series

If the function				
has a radius of convergence of, then, on the interval				
f is c	and thus	. The derivativ	e and	
antiderivative are given below:				
1.				
2				
L .				
The radius of convergence of	of the series obtained by			
or	a power series is the	c	is that of	
the	power series. What may cl	nange is the		
of conv	vergence.			

Example 3: Let
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 and $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$.

a. Find the interval of convergence of $\,f\,.\,$

b. Find the interval of convergence of $\,g\,.\,$

c. Show that f'(x) = g(x).

d. Show that g'(x) = -f(x).

e. Identify the function \boldsymbol{f} .

f. Identify the function g.

Example 4: Write an equivalent series with the index of summation beginning at n = 1.

a.
$$\sum_{n=0}^{\infty} (-1)^{n+1} (n+1) x^n$$
 b. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$

9.9: Representing Functions as Power Series

When you finish your homework you should be able to...

- π Manipulate a geometric series to represent a function as a power series
- $\pi\,$ Differentiate or integrate a geometric series to represent a function as a power series.

WARM-UP: Find the infinite sum of the convergent series $\sum_{n=0}^{\infty} 5\left(-\frac{3}{4}\right)^n$.

Now consider the function $f(x) = \frac{1}{1-x}$.

Thisreprese	nts $f(x) = \frac{1}{1-x}$ only on th	e interval from			
What is the dom	nain of f?	·			
How would we represent f on another interval? We must develop a					
	_which is	_at a different			
value.					
Example 1: Find the power series f	or $f(x) = \frac{1}{1-x}$ centered a	t c = -2.			
Example 2: Find a geometric power series for the function $f(x) = \frac{2}{5-x}$

centered at 0, (a) by manipulating the function into the format of a geometric power series and (b) by using long division.

Example 3: Find a power series for the function, centered at *c*, and determine the interval of convergence.

a.
$$f(x) = \frac{3}{2x-1}, c = 2$$

b.
$$f(x) = \frac{4}{3x-2}, c = 3$$

Operations with Power Series

Let
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ be power series centered at 0.
1. $f(kx) = \sum_{n=0}^{\infty} a_n k^n x^n$, where ______ is a ______.
2. $f(x^N) = \sum_{n=0}^{\infty} a_n x^{nN}$, where ______ is a ______.
3. $f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n)$

Note: These operations can change the ______ of ______ for the resulting series.

Example 4: Find a power series for the function, centered at *c*, and determine the interval of convergence.

a.
$$f(x) = \frac{5}{5+x^2}, c=0$$

b.
$$f(x) = \frac{3x-8}{3x^2+5x-2}, c = 0$$

Example 5: Consider the functions $f(x) = \frac{1}{1+x}$ and $g(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$.

a. Find a power series for f , centered at 0.

b. Use your result from part a to determine a power series, centered at 0, for the function $h(x) = \frac{x}{x^2 - 1} = \frac{1}{2(1 + x)} - \frac{1}{2(1 - x)}$. Identify the interval of convergence.

c. Use your result from part a to determine a power series, centered at 0, for the function $r(x) = \frac{2}{(x+1)^3}$. Identify the interval of convergence.

d. Use your result from part a to determine a power series, centered at 0, for the function $s(x) = \ln(1-x^2)$. Identify the interval of convergence.

9.10: Taylor and Maclaurin Series

When you finish your homework you should be able to...

- $\pi~$ Find a Taylor series or a Maclaurin series for a function.
- π Find a binomial series.
- π Use a basic list of Taylor series to derive other power series.

WARM-UP: Find the 8th degree Maclaurin polynomial for the function $f(x) = \cos x$.

Now let's see if we can form a power series!

What about that interval of convergence?

If f is represented by a power series $f(x) = \sum a_n (x-c)^n$ for all x in an open interval I containing c, then

and

If a function f has derivatives of all orders at $x = c$, then the series		
is called theseries for	at If,	
then the series is the	series for	

Example 1: Find the Taylor series, centered at c, for the function. a. $f(x) = e^{-4x}$, c = 0

b.
$$f(x) = \frac{1}{1-x}, c = 2$$

If $\lim_{n\to\infty} R_n = 0$ for all x in the interval I, then the Taylor series for f converges and equals f(x).

Example 2: Prove that the Maclaurin series for $f(x) = \cos x$ converges to f(x) for all x.

Binomial Series

Let's check out the function $f(x) = (1+x)^k$, where k is a rational number. What do you think the Maclaurin series is for this function? Guess what...YOU KNOW HOW TO FIND IT!!! So, on your mark, get set, GO!

1. _____ f(x) a bunch of times and evaluate each

_____ at _____ a t_____ a

2. Determine the	of	Don't forget
to test the	!	

Guidelines for Finding a Power Series

Example 3: Find the Maclaurin series for the function using the binomial series.

$$a. \quad f(x) = \frac{1}{\left(1+x\right)^4}$$

b.
$$f(x) = \sqrt{1 + x^3}$$

A Basic List of Power Series for Elementary Functions

FUNCTION	INTERVAL OF CONVERGENCE
$\frac{1}{x} =$	0 < <i>x</i> < 2
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + \dots$	-1 < x < 1
$\ln x =$	$0 < x \le 2$
$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \dots + \frac{x^{n}}{n!} + \dots$	$-\infty < x < \infty$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$	$-\infty < x < \infty$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	$-\infty < x < \infty$
$\arctan x =$	$-1 \le x \le 1$
$\arcsin x =$	$-1 \le x \le 1$
$(1+x)^{k} = 1 + kx + \frac{k(k-1)x^{2}}{2!} + \frac{k(k-1)(k-2)x^{3}}{3!} + \cdots$	$-1 < x < 1^*$

*convergence at endpoints depends on \boldsymbol{k}

Example 4: Find the Maclaurin series for the function using the basic list of power series for elementary functions.

$$a. \quad f(x) = \ln(1+x^2)$$

b.
$$f(x) = e^x + e^{-x}$$

c.
$$f(x) = \cos^2 x$$

d. $f(x) = x \cos x$

Example 5: Find the first four nonzero terms of the Maclaurin series for the function $f(x) = e^x \ln(1+x)$.

Example 6: Use a power series to approximate the value of the integral with an error less than 0.0001.

 $\int_0^{1/2} \arctan x^2 dx$

7.4: Arc Length and Surfaces of Revolution

When you finish your homework you should be able to...

- $\pi~$ Find the arc length of a smooth curve.
- $\pi~$ Find the area of a surface of revolution

Arc length is approximated by ______ infinitely many _____.

A _____ curve is one which has a _____ arc length. A

sufficient condition for the graph of a function _____ to be rectifiable between

_____ and _____ is that _____ be continuous on _____. A

function of this type is considered to be ______ differentiable

on _____ and its graph on the interval _____ is a _____.

Definition of Arc Length

Let the function	_ represent a smooth cu	rve on the interval
The arc length of betwee	en and is	
For a smooth curve	_ on the interval	_ the arc length of
between and is		

EXAMPLE 1: Find the arc length from (-3,4) clockwise to (4,3) along the circle $x^2 + y^2 = 25$. Show that the result is one-fourth the circumference of a circle.

Definition of Surface of Revolution

When the graph of a continuous function is	about a,the
resulting surface is a of	·

Definition of the Area of a Surface of Revolution

Let the function have a continuous derivative on the interval
The area of the surface of revolution formed by revolving the
graph of about a horizontal or vertical axis is
where is the distance between the graph of and the axis of revolution.
If on the interval then the surface area is
where is the distance between the graph of and the axis of revolution.

EXAMPLE 2: Find the area of the surface generated by revolving the curve $y = 9 - x^2$ about the y-axis.

10.1: Conics and Calculus

When you finish your homework you should be able to...

- $\pi\,$ Use properties of conic sections to analyze and write equations of parabolas, ellipses, and hyperbolas.
- $\pi\,$ Classify the graph of an equation of a conic section as a circle, parabola, ellipse, or hyperbola.
- $\pi~$ Find the equations of lines tangent and normal to conic sections

The graph of each type of _______ section can be described as the

intersection of a plane and two identical _____ which are connected at

their vertices.

parabola	A parabola is the set of all	
		that are
circle		from a fixed line
ellipse	called the	and a fixed
X	point called the	

Theorem: Standard Equation of a Parabola

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 1: Consider $y^2 + 6y + 8x + 25 = 0$.

a. Find the vertex, focus, and the directrix of the parabola and sketch its graph.

b. Find the equation of the line tangent to the graph at x = -4.

An ellipse is the set of all	the sum of
whose distances from two distinct fixed points called	is
constant.	

Theorem: Standard Equation of an Ellipse

Theorem: Reflective Property of an Ellipse

Definition of Eccentricity of an Ellipse

The	of an ellipse is given by the ratio
For an ellipse that is close to being a	, the foci are close to
the and the _	is close

	to	An		ellipse has	s foci	which	are c	lose
--	----	----	--	-------------	--------	-------	-------	------

to the	and the	_ is close to
--------	---------	---------------

EXAMPLE 2: Consider $16x^2 + 25y^2 - 64x + 150y + 279 = 0$.

Find the center, foci, vertices, and eccentricity of the ellipse and sketch its graph.

EXAMPLE 3: Find an equation of the ellipse with vertices (0,3) and (8,3) and eccentricity $\frac{3}{4}$.

A hyperbola is the set of all	for which the
absolute value of the difference between the dista	nces from two distinct fixed
points called is constant. The lir	ne
connecting the vertices is the	, and the
of the transverse axis is the _	of the
hyperbola.	
\leftarrow \leftarrow	
Theorem: Standard Equation of a Hyperbola	
is Tra	n center nsverse Axis is Horizontal
or	
Trai	nsverse Axis is Vertical
The vertices are units from the center, and the f center with	foci are units from the

or Transverse Axis is Vertical

EXAMPLE 4: Consider
$$\frac{y^2}{4} - \frac{x^2}{2} = 1$$
.

a. Find the center, foci, and vertices of the hyperbola, and sketch its graph using asymptotes.

b. Find equations for the tangent lines to the hyperbola at x = 4.

c. Find equations for the normal lines to the hyperbola at x = 4.

EXAMPLE 4: A cable of a suspension bridge is suspended in the shape of a parabola between two towers that are 120 meters apart and 20 meters above the roadway. The cable touches the roadway midway between the two towers.

a. Find an equation for the parabolic shape of the cable.

b. Find the length of the cable.

10.2: Plane Curves and Parametric Equations

When you finish your homework you should be able to...

- π Sketch the graph of a curve given by a set of parametric equations.
- π Eliminate the parameter in a set of parametric equations.
- π Find a set of parametric equations to represent a curve.

We currently use a	equation involving	variables to
represent a This tells	s us an obj	ject has
been but it doesn't tell us	_ the object was at a giver	۱
To determine this	, we introduce a third var	riable, <u> </u> , called
a Using two equ	ations to represent each _	and as
functions of gives us	<u> </u>	·
Definition of a Plane Curve		
If and are continuous functions	ons of on an interval	, then the
are equations and	is the	The set of
points obtained as va	ries over the interval	is the
of the parametric equa	tions. Taken together, the	
equations and the	are a	

EXAMPLE 1: Consider $x = 2t^2$, $y = t^4 + 1$.

a. Sketch the curve represented by the parametric equations. Be sure to indicate the orientation.

EXAMPLE 2: Consider $x = \cos \theta$, $y = 2 \sin 2\theta$.

a. Use your graphing calculator to sketch the curve represented by the parametric equations. Be sure to indicate the orientation.

EXAMPLE 3: Consider $x = -2 + 3\cos\theta$, $y = -5 + 3\sin\theta$.

a. Sketch the curve represented by the parametric equations. Be sure to indicate the orientation.

 $\theta \quad x = -2 + 3\cos\theta \quad y = -5 + 3\sin\theta$

EXAMPLE 4: Consider $x = e^{2t}$, $y = e^t$.

a. Use your graphing calculator to sketch the curve represented by the parametric equations. Be sure to indicate the orientation.

EXAMPLE 5: Find a set of parametric equations for the line or conic.

a. Circle: Center (-6,2) , radius 4

b. Ellipse: Vertices (4,7), (4,-3), Foci: (4,5), (4,-1).

10.3: Plane Curves and Parametric Equations

When you finish your homework you should be able to...

- π Find the slope of a line tangent to a plane curve.
- $\pi~$ Find the arc length of a plane curve.
- π Find the area of a surface of revolution given in parametric form.

Theorem: Parametric Form of the Derivative

EXAMPLE 1: Consider $x = 4\cos t$, $y = 2\sin t$, $0 < t < 2\pi$.

a. Find
$$\frac{dy}{dx}$$
.

b. Find
$$\frac{d^2y}{dx^2}$$
.

c. Find all points (if any) of horizontal and vertical tangency to the curve.

d. Determine the open *t*-intervals on which the curve is concave downward or concave upward.

Theorem: Arc Length in Parametric Form

NOTE: Make sure that the arc length is _____ only once on the interval!!!

EXAMPLE 2: Find the arc length of the curve given by the equations $x = \arcsin t$

and $y = \ln \sqrt{1 - t^2}$ on the interval $0 \le t \le \frac{1}{2}$.

Theorem: Area of a Surface of Revolution

If a smooth curve C is given by the equations	and	such		
that C does not intersect itself on the interval		, then the area S		
of the surface of revolution formed by revolving C about the coordinate axes is				
given by				
Revolution about	t the x-axis	s;		
Revolution about	t the y-axis	s;		

EXAMPLE 3: Find the area of the surface generated by revolving the curve given by the equations $x = 5\cos\theta$ and $y = 5\sin\theta$ on the interval $0 \le \theta \le \pi$ about the y-axis.

EXAMPLE 4: A portion of a sphere of radius r is removed by cutting out a circular cone with its vertex at the center of the sphere. The vertex of the cone forms an angle of 2θ . Find the surface area removed from the cone.

10.4: Polar Coordinates and Graphs

When you finish your homework you should be able to...

- π Convert between rectangular and polar coordinates.
- $\pi~$ Sketch the graph of an equation in polar form.
- $\pi~$ Find the slope of a line tangent to the pole.
- π Identify special polar graphs.

Up to this point, we've been using the _____ coordinate system to sketch graphs. Now we will be using the _____ coordinate system to sketch graphs given in ______ form. This form is very useful in the third semester calculus course as it makes many definite _____ easier to evaluate after switching from rectangular to polar coordinates. The polar coordinate system has a fixed point O, called the _____ or _____. From the pole, an initial _____ is constructe. This is called the _____ axis. Each point P in the plane is assigned _____ coordinates in the form _____ distance from ____ to ____ and ____ is the _____ angle which is _____ from the polar axis to the segment_____. Unlike rectangular coordinates, each point in polar coordinates does NOT have a _____ representation. Can you figure out another point in polar coordinates which would be equivalent to

In general, the point (r, θ) can be written as

where ____ is any integer. The pole

is represented by _____, where

____ is any angle.

Theorem: Coordinate Conversion

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 1: Plot the point in polar coordinates and find the corresponding rectangular coordinates for the point.

EXAMPLE 2: Find two corresponding polar coordinates for the point given in rectangular coordinates.

a.
$$\left(3,\frac{\pi}{4}\right)$$
 b. $\left(-6,\frac{\pi}{2}\right)$

EXAMPLE 3: Sketch the graph of the polar equation, and convert to rectangular form.

a. r = -4

c. $r = 3\sin\theta$

d. $r = \cot \theta \csc \theta$

EXAMPLE 4: Convert the rectangular equation to polar form.

a.
$$x^2 - y^2 = 9$$

b.
$$xy = 4$$

Consider $x = r \cos \theta = f(\theta) \cos \theta$ and $y = r \sin \theta = f(\theta) \sin \theta$.

Theorem: Slope in Polar Form

If f is a differentiable function of θ , then the slope of the tangent line to the graph of $r = f(\theta)$ at the point (r, θ) is provided that ______ at _____.

HMMMMM...I guess that means...

EXAMPLE 5: Consider $r = 2(1 - \sin \theta)$. Hint: use $\frac{\pi}{24}$ for the increment between the values of θ .

a. Sketch the graph of the equation.

c. Find all points (if any) of horizontal and vertical tangency to the curve.

d. Find the tangents at the pole.

EXAMPLE 6: Consider $f(\theta) = 8\cos 3\theta$.

a. Graph the equation by hand.

b. Find $\frac{dy}{dx}$.

c. Find all points (if any) of horizontal and vertical tangency to the curve.

d. Find the tangents at the pole.

10.5: Area and Arc Length in Polar Coordinates

When you finish your homework you should be able to...

- π Find the points of intersection between polar graphs.
- π Find the area of a region bounded by a polar graph.
- π Find the arc length of a polar graph.
- π Find the area of a surface of revolution (polar form)

To find the points of ______ of polar graphs, you merely

_____ the _____ of _____ equations.

EXAMPLE 1: Find the points of intersection of the graphs of the equations $r = 3(1 + \sin \theta)$ and $r = 3(1 - \sin \theta)$.

The formula for th	ie	of a		region is developed by
	infinitely many		of	Recall that the

area of a sector is _____.

Theorem: Area in Polar Coordinates

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, $0 < \beta - \alpha \le 2\pi$, then the area of the region bounded by the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is $0 < \beta - \alpha \le 2\pi$

CREATED BY SHANNON MYERS (FORMERLY GRACEY)

EXAMPLE 2: Find the area of the region of one petal of $r = 4 \sin 3\theta$.

EXAMPLE 3: Find the area of the region of the interior of $r = 4 - 4\cos\theta$.

EXAMPLE 4: Find the area of the common interior of $r = 2(1 + \cos \theta)$ and $r = 2(1 - \cos \theta)$.

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is

EXAMPLE 5: Find the arc length of the curve $r = 8(1 + \cos \theta)$ over the interval $0 \le \theta \le 2\pi$.

Theorem: Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The area of the surface formed by revolving the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ about

the polar axis is:

the line $\theta = \frac{\pi}{2}$ is:

EXAMPLE 6: Find the area of the surface formed by revolving the curve

 $r = 6\cos\theta$ about the polar axis over the interval $0 \le \theta \le \frac{\pi}{2}$.

