Section 8.2: Integration by Parts

When you finish your homework, you should be able to...
π Use the integration by parts technique to find indefinite integral and evaluate definite integrals
π Use the tabular method to organize an integral requiring integration by parts
π Recognize trends and establish guidelines for integrals requiring integration by parts

Warm-up:

1. Differentiate with respect to the independent variable.
a. $f(x)=\arcsin 5 x$
b. $y=\ln (5 x+1)$
c. $r(\theta)=\tan \theta$
2. Find the indefinite integral.
a. $\int \frac{\arctan x}{x^{2}+1} d x$
b. $\int \frac{(\ln x)^{3}}{x} d x$
c. $\int x \sqrt{5-x} d x$
3. Evaluate the definite integral.

$$
\int_{0}^{\pi / 8} \tan ^{2} 6 \theta \sec ^{2} 6 \theta d \theta
$$

\qquad by \qquad is based on the formula for the \qquad of a \qquad and is useful for involving products of algebraic and
\qquad functions.

Consider the following product of two functions of x that have continuous

THEOREM: INTEGRATION BY PARTS

If u and v are functions of x and have \qquad derivatives, then

This technique turns a super complicated integral into \qquad ones. The trick is to choose your function \qquad so that \qquad is \qquad than \qquad . Oh yeah...and PRACTICE A \qquad OF PROBLEMS!!!

Okay...let's look at the " \qquad " types of Integration by Parts (IBP) problems.

Which types of expressions do not have \qquad integration formulas?
1.
2.

EXAMPLE 1: Find the following indefinite integrals.
a. $\int 4 x^{2} \ln x d x$
b. $\int \arcsin x d x$

When you don't have a \qquad factor, you need to play around with the \qquad . Oftentimes it works out to let
\qquad be the factor whose \qquad is a simpler than u. Then \qquad would be the more remaining factor. Use

There is a lot of \qquad and \qquad --especially at first(:)
**Remember: \qquad ALWAYS includes \qquad

EXAMPLE 2: Find the indefinite integral.
a. $\int \frac{6 x}{e^{7 x}} d x$
b. $\int x \sqrt{5-x} d x$
c. $\int x \sec ^{2} x d x$
\qquad times. You may even need to \qquad like (yes, you can do that)!

EXAMPLE 3: Find the indefinite integral.

a. $\int e^{-x} \cos 3 x d x$
b. $\int x^{2} e^{-x} d x$

THE TANZALIN (AKA TABULAR) METHOD is a way of organizing an integration by parts problem. Let's rework the last example using this method.

DERIVATIVES u	INTEGRALS $d v$	ALTERNATE SIGNS	SAME-COLOR PRODUCTS

Let's try to bring this all together...

In general, use the following choice for u, in order.
1.
2.
3.
** When you have $\int e^{a x} \cos b x d x$ or $\int e^{a x} \sin b x d x$, let \qquad and let _ or let \qquad .
**To evaluate a definite integral, first find the \qquad integral and then back substitute.

EXAMPLE 5: Find the indefinite integral or evaluate the definite integral.
a. $\int_{0}^{1} x \arcsin x^{2} d x$
b. $\int \frac{x^{3} e^{x^{2}}}{\left(x^{2}+1\right)^{2}} d x$

Section 8.3: Trigonometric Integrals

When you finish your homework, you should be able to...
π Find indefinite integrals and evaluate definite integrals involving the sine and cosine functions which are raised to positive powers
π Find indefinite integrals and evaluate definite integrals involving the secant and tangent functions which are raised to positive powers
π Use trigonometric identities to find indefinite integral and evaluate definite integrals involving the sine and cosine functions

Warm-up 1: Simplify.
a. $1-\sin ^{2} x$
b. $1+\tan ^{2} x$
c. $\frac{1-\cos 2 x}{2}$
d. $\frac{1+\cos 2 x}{2}$

Warm-up 2: Complete the statement.
a. If $u=\sin 2 x$, then $d u=$ \qquad .
b. If $u=\cos 4 x$, then $d u=$ \qquad .
c. If $u=\tan x$, then $d u=$ \qquad .
d. If $u=\sec 6 x$, then $d u=$ \qquad .

EXAMPLE 1: Find the indefinite integral.
a. $\int \frac{\cos x}{\sqrt{\sin x}} d x$
b. $\int \sin ^{3} x \cos ^{2} x d x$

So we discovered that if the sine portion of the integrand has an \qquad , positive integer as a power and the cosine portion has any other power, then we save \qquad sine factor, and \qquad the others to
\qquad and \qquad .
c. $\int \sin ^{4} 2 x \cos ^{3} 2 x d x$

So we discovered that if the \qquad portion of the integrand has an odd, positive integer as a power and the sine portion has any other power, then we save \qquad cosine factor, and \qquad the others to
\qquad .
d. $\int \sin ^{4} 5 x d x$

So we discovered that if only one sine or cosine factor is in the integrand and has an \qquad positive integer as a power, you use the \qquad formula
\qquad or \qquad until you can use basic integration formulas. What should we do if both the sine and cosine are raised to even, positive powers?
e. $\int \sec ^{4} x \tan ^{3} x d x$

So we discovered that if the \qquad portion of the integrand has an even, positive integer as a power and the tangent portion has any other exponent, then we save \qquad factors, and convert the rest to
\qquad and \qquad .
f. $\int \sec ^{3} 5 x \tan ^{3} 5 x d x$

So we discovered that if the \qquad portion of the integrand has an odd, positive integer as a power and the secant portion has any other exponent, then we save a \qquad - \qquad factor, and convert the
\qquad factors. Then \qquad and \qquad .
g. $\int \tan ^{4} x d x$

So we discovered that if there is only a \qquad factor raised to a positive, power, rewrite as two \qquad factors, one of which is convert the other to \qquad
minus \qquad and then and \qquad .
h. $\int \sec ^{3} x d x$

So we discovered that if there is only a \qquad factor raised to a positive, power, we need to use \qquad by \qquad

If none of these techniques work, try converting all factors to \qquad and factors. Then play around with identities.

EXAMPLE 2: Find the indefinite integral.
a. $\int \frac{\tan ^{2} x}{\sec ^{5} x} d x$
b. $\int \frac{\sin ^{2} x-\cos ^{2} x}{\cos x} d x$

PRODUCT TO SUM IDENTITIES

If \qquad
\square occur in the integral, use the following identities.

$$
\begin{aligned}
& \sin m x \sin n x= \\
& \sin m x \cos n x= \\
& \cos m x \cos n x=
\end{aligned}
$$

You do not need to memorize these identities.

EXAMPLE 3: Find the indefinite integral.
$\int \sin 7 x \cos 4 x d x$

EXAMPLE 4: Find the area of the region bounded by the graphs of $y=\cos ^{2} x$, $y=\sin x \cos x, x=-\frac{\pi}{2}$, and $x=\frac{\pi}{4}$.

Section 8.4: Trigonometric Substitution

When you finish your homework, you should be able to...
π Find indefinite integrals using trigonmometric substitution
π Evaluate definite integrals using trigonmometric substitution
Warm-up 1: Consider the definite integral $\int_{-2}^{2} \sqrt{4-x^{2}} d x$. Do you have the skills to evaluate this definite integral? \qquad !

What tool did we use in Calculus I? \qquad !

Warm-up 2: Complete the figures.
a. $u=a \sin \theta$

So, $\sqrt{a^{2}-u^{2}}=$
for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
b. $u=a \tan \theta$

So, $\sqrt{a^{2}+u^{2}}=$

for $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.
c. $u=a \sec \theta$

So, $\sqrt{u^{2}-a^{2}}=$
 for $u>a$, where $0 \leq \theta<\frac{\pi}{2}$ for $u<-a$, where $\frac{\pi}{2}<\theta \leq \pi$.

NOTE: These are the same intervals over which the \qquad ,
\qquad
restrictions on \qquad ensure that the function used for the substitution is
\qquad -to- \qquad .

EXAMPLE 1: Evaluate the definite integral.
$\int_{-2}^{2} \sqrt{4-x^{2}} d x$

So we discovered that if the integrand has a and no basic integration rules, ___ or regular \qquad integrals work, we use the substitution \qquad

EXAMPLE 2: Find the indefinite integral.
a. $\int \frac{\sqrt{x^{2}-16}}{x} d x$

So we discovered that if the integrand has a \qquad and no basic integration rules, \qquad , or regular \qquad integrals work, we use the substitution
b. $\int \frac{1}{x \sqrt{9 x^{2}+1}} d x$

So we discovered that if the integrand has a \qquad and no basic integration rules, \qquad , or regular integrals work, we use the substitution \qquad
c. $\int \frac{x^{2}}{\sqrt{2 x-x^{2}}} d x$

EXAMPLE 3: Evaluate the definite integral.

$$
\int_{0}^{\sqrt{3} / 2} \frac{1}{\left(1-t^{2}\right)^{5 / 2}} d t
$$

Section 8.5: Partial Fractions

When you finish your homework you should be able to...
π Review how to decompose rational expressions into partial fractions
π Utilize partial fractions to find indefinite integrals
π Utilize partial fractions to evaluate definite integrals
Warm-up: Find the indefinite integral.
$\int \frac{x^{2}-x-1}{x-1} d x$

(CASE 1) Q HAS ONLY NONREAPEATED LINEAR FACTORS

Under the assumption that Q has only \qquad linear factors, the polynomial Q has the form
where no two of the numbers \qquad are equal. In this case, the partial fraction decomposition of \qquad is of the form
where the numbers \qquad are to be determined.

Example 1: Write the partial fraction decomposition of the rational expression in the integrand, and find the indefinite integral.
$\int \frac{2}{9 x^{2}-1} d x$

If the polynomial Q has a \qquad linear factor, say n is an \qquad then, in the partial fraction decomposition of \qquad , we allow for the terms where the numbers \qquad are to be determined.

Example 2: Write the partial fraction decomposition of the rational expression in the integrand, and find the indefinite integral.
$\int \frac{5 x-2}{(x-2)^{2}} d x$

(CASE 3) Q CONTAINS A NONREAPEATED IRREDUCIBLE QUADRATIC

 FACTORIf Q contains a \qquad irreducible quadratic factor of the form , then, in the partial fraction decomposition of
\qquad allow for the term
where the numbers \qquad are to be determined.

Example 3: Write the partial fraction decomposition of the rational expression in the integrand, and find the indefinite integral.
$\int \frac{6 x}{x^{3}-8} d x$

(CASE 4) Q CONTAINS A REAPEATED IRREDUCIBLE QUADRATIC FACTOR

If the polynomial Q contains a \qquad irreducible quadratic factor of the form \qquad , \qquad n is an
\qquad then, in the partial fraction decomposition of \qquad allow for the terms
where the numbers \qquad are to be determined.

Example 4: Write the partial fraction decomposition of the rational expression in the integrand, and evaluate the definite integral.
$\int_{0}^{1} \frac{x^{3}}{\left(x^{2}+16\right)^{2}} d x$

Example 5: Find the indefinite integral.

$$
\int \frac{5 \cos x}{\sin ^{2} x+3 \sin x-4} d x
$$

Section 8.7: Indeterminate Forms and L'Hôpital's Rule
When you finish your homework you should be able to...
π Recognize all indeterminate forms
π Apply L'Hôpital's Rule to evaluate limits
π Manipulate expressions so that L'Hôpital's Rule may be applied to evaluate limits

WARM-UP: Find the limit. It is okay to write $\pm \infty$ as your answer.

1. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
2. $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}-x+1}{x^{2}-1}$
3. $\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{x+\Delta x}-\frac{1}{x}}{\Delta x}$
4. $\lim _{x \rightarrow \pi^{+}} \csc x$
$x \rightarrow \pi^{+}$
5. $\lim \ln x$ $x \rightarrow 0^{+}$
6. $\lim _{x \rightarrow \infty} \arctan x$
7. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
8. $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x+x \cos x}$

What indeterminate form did you encounter in some of these problems?

What skills did you use to get these expressions into a determinate form?:
1.
2.
3.

L'Hôpital's Rule

Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ near a (except possible at a). Suppose that

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty
$$

meaning that we have an \qquad form of \qquad or \qquad .

Then

If the limit on the right side \qquad or is \qquad or \qquad .
*What should we check before applying L'Hôpital's Rule?

1. \qquad and \qquad are \qquad near \qquad and
2. \qquad near \qquad .
**L'Hôpital's Rule is also valid for \qquad limits and for limits at \qquad or \qquad _.
***Let's look at the special case when $f(a)=g(a)=0, f^{\prime}$ and g^{\prime} are continuous, and $g^{\prime}(x) \neq 0$.

Example 1: Determine if L'Hôpital's Rule can be used to evaluate the limit. If so, apply L'Hôpital's Rule to evaluate the limit.
a. $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
b. $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}-x+1}{x^{2}-1}$
c. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
d. $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x+x \cos x}$
e. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$

Indeterminate Forms
We already know that \qquad and \qquad represent 2 types of
\qquad forms. There are also indeterminate \qquad ,
\qquad and \qquad .

Indeterminate Products occur when the limit of 1 \qquad approaches
\qquad and the other factor approaches \qquad or \qquad . Suppose
\qquad and \qquad . If \qquad prevails, the result of the limit of the \qquad will be \qquad . If \qquad is the victor, the \qquad of the product will be \qquad . If they decide to sign a \qquad the answer will be some \qquad , \qquad number. To find out, see if you can \qquad the difference into a
\qquad .

Example 2: Evaluate the limit.

a. $\lim _{x \rightarrow \infty} \sqrt{x} e^{-x / 2}$
b. $\lim _{x \rightarrow 0^{+}} \sin x \ln x$

Indeterminate Differences occur when both limits approach \qquad .

Suppose \qquad and \qquad . If \qquad prevails, the result of the limit of the \qquad will be \qquad . If \qquad is the victor, the \qquad of the product will be \qquad . If they decide to sign
a \qquad the answer will be some \qquad number. To find out, see if you can \qquad the difference into a \qquad by using a
\qquad
\qquad , or \qquad
out a \qquad
\qquad .

Example 3: Evaluate the limit.
a. $\lim _{x \rightarrow 0}(\csc x-\cot x)$
b. $\lim _{x \rightarrow 1^{+}}\left[\ln \left(x^{7}-1\right)-\ln \left(x^{5}-1\right)\right]$

Indeterminate Powers occur when \qquad . There are 3 indeterminate forms that arise from this type of limit.

1. \qquad and \qquad . This yields the inderminate form \qquad .
2. \qquad and \qquad . This yields the inderminate
form \qquad .
3. \qquad and \qquad . This yields the inderminate form \qquad .

To find these types of limits, see if you can take the \qquad
or write the function as an \qquad :

Example 4: Evaluate the limit.
a. $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}$
b. $\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}$

Section 8.8: Improper Integrals

When you finish your homework you should be able to...
π Recognize when a definite integral is improper
π Use your integration and limit techniques to evaluate improper integrals
WARM-UP: Consider the function $f(x)=\frac{2}{x^{3}}$.

1. Graph the function.

2. Find the limits. It is okay to write $\pm \infty$ as your answer.
a. $\lim _{x \rightarrow 0^{+}} \frac{2}{x^{3}}$
b. $\lim _{x \rightarrow \infty} \frac{2}{x^{3}}$
3. Evaluate the definite integral.
$\int_{1}^{b} \frac{2}{x^{3}} d x$

Let's put some stuff together()
Recall the if a function is \qquad on the interval \qquad , the \qquad integral is equal to the \qquad under the
\qquad and bounded by the \qquad . Also remember that a
function is said to have an infinite \qquad at \qquad when, from the \qquad or the left,

TYPE 1: INFINITE INTERVALS

Now consider the following definite integral.
$\int_{1}^{\infty} \frac{2}{x^{3}} d x$

Definition: Improper Integrals With Infinite Integration Limits

1. Suppose f is continuous on the interval from \qquad then

$$
\int_{a}^{\infty} f(x) d x=
$$

2. Suppose f is continuous on the interval from \qquad then

$$
\int_{-\infty}^{b} f(x) d x=
$$

3. Suppose f is continuous on the interval from \qquad , then
$\int_{-\infty}^{\infty} f(x) d x=$
where \qquad is any real number.

In the first two cases, the improper integral \qquad when the exists; otherwise the improper integral \qquad . In the third case, the improper integral on the left \qquad when either of the improper integrals on the \qquad diverge.

Example 1: If possible, evaluate the following definite integrals and ascertain if they are convergent or divergent.
a. $\int_{1}^{\infty} \frac{d x}{x}$

b. $\int_{-\infty}^{\infty} \frac{d x}{4+x^{2}}$

TYPE 2: DISCONTINUOUS INTEGRANDS

Now consider the following definite integral.
$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$

Definition: Improper Integrals With Infinite Discontinuities

1. Suppose f is continuous on the interval from ___ and has an infinite \qquad at \qquad , then
$\int_{a}^{b} f(x) d x=$
2. Suppose f is continuous on the interval from \qquad and has an infinite \qquad at \qquad , then
$\int_{a}^{b} f(x) d x=$
3. Suppose f is continuous on the interval from \qquad , except for some
\qquad in \qquad at which f has an infinite \qquad at
\qquad then
$\int_{a}^{b} f(x) d x=$
In the first two cases, the improper integral \qquad when the exists; otherwise the improper integral \qquad . In
the third case, the improper integral on the left \qquad when either of the improper integrals on the \qquad diverge.

Example 2: If possible, evaluate the following definite integrals and ascertain if they are convergent or divergent.
a. $\int_{3}^{6} \frac{d x}{\sqrt{36-x^{2}}}$
b. $\int_{1}^{\infty} \frac{d x}{x \ln x}$

Consider $\int \frac{d x}{x^{p}}$, where p is a real number. Let's find the indefinite integral on

1. $p=0$
2. $p \neq 1$
3. $p=1$

Example 3: Determine all values of p for which the improper integral converges.

$$
\int_{1}^{\infty} \frac{d x}{x^{p}}
$$

THEOREM: A SPECIAL TYPE OF IMPROPER INTEGRAL

$$
\int_{1}^{\infty} \frac{d x}{x^{p}}= \begin{cases}\frac{1}{p-1}, & p>1 \\ \text { diverges, }, & p<1\end{cases}
$$

Example 4: If possible, evaluate the following definite integrals and ascertain if they are convergent or divergent.
a. $\int_{1}^{\infty} \frac{d x}{x^{1 / 2}}$
b. $\int_{1}^{\infty} x^{-3} d x$

9.1: Sequences

When you finish your homework you should be able to...
π Identify the terms of a sequence, write a formula for the nth term of a sequence, and ascertain whether a sequence converges or diverges.
π Use properties of monotonic sequences and bounded sequences.
WARM-UP: Consider the function $f(x)=\sqrt{x}$.

1. Sketch the graph of the function.

2. Find the following:
a. $f(0)=$ \qquad c. $f(2)=$
e. $f(4)=$
b. $f(1)=$ \qquad
d. $f(3)=$ \qquad
f. $f(5)=$ \qquad
g. $\lim _{x \rightarrow 0} \sqrt{x}=$ \qquad
h. $\lim _{x \rightarrow 1} \sqrt{x}=$ \qquad
i. $\lim _{x \rightarrow 4} \sqrt{x}=$ \qquad
j. $\lim _{x \rightarrow \infty} \sqrt{x}=$ \qquad
3. Now consider $a_{n}=\sqrt{n}$.
4. Find the following:
a. $a_{1}=$ \qquad c. $a_{3}=$ \qquad
e. $a_{5}=$ \qquad
b. $a_{2}=$ \qquad
d. $a_{4}=$ \qquad

Hmmm...so it looks like \qquad equals \qquad at all of the \qquad
5. Sketch the graph of the sequence.

Definition of the Limit of a Sequence
Let L be a real number. The \qquad of a sequence \qquad is \qquad written as

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if for $\varepsilon>0$, there exists $M>0$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n>M$. If the limit L exists, then the sequence \qquad . If the limit does not exist, then the sequence \qquad .

Looking at the two graphs we sketched, as \qquad it looks like
\qquad So, we would say the $\lim _{n \rightarrow \infty} a_{n}$ \qquad . and \qquad .

EXAMPLE 1: Write the first five terms of the sequence.
a. $a_{n}=\frac{3 n}{n+4}$
b. $a_{1}=6, a_{k+1}=\frac{1}{3} a_{k}{ }^{2}$

FACTORIALS are factors which decrease by one. So 5 !, read as "five factorial" is $5!=$ \qquad
\qquad . We will be working with unknown factorials.

In general, $n!=$ \qquad , and $0!=$ \qquad .

EXAMPLE 2: Simplify the ratio of factorials.
a. $\frac{n!}{(n+2)!}$
b. $\frac{(2 n+2)!}{(2 n)!}$

EXAMPLE 3: Find the nth term of the sequence.
a. $1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots$
b. $\frac{1}{2 \cdot 3}, \frac{1}{3 \cdot 4}, \frac{1}{4 \cdot 5}, \frac{1}{5 \cdot 6}, \ldots$

Theorem: Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that

If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then

EXAMPLE 4: Find the limit of the sequence, if it exists.
a. $a_{n}=6+\frac{2}{n^{2}}$
b. $a_{n}=\cos \frac{2}{n}$

Theorem: Properties of Limits of Sequences

Let $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=K$.

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=$
2. $\lim _{n \rightarrow \infty} c a_{n}=c$ is any \qquad number.
3. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=$
4. $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=$ \qquad and \qquad

EXAMPLE 5: Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit.
a. $a_{n}=\frac{1+(-1)^{n}}{n^{2}}$
b. $a_{n}=\frac{\sqrt[3]{n}}{\sqrt[3]{n}+1}$
c. $a_{n}=\frac{(n-2)!}{n!}$

Absolute Value Theorem

For the sequence $\left\{a_{n}\right\}$, if
$\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then \qquad

Squeeze Theorem for Sequences
If $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}$ and there exists an integer N such that
then \qquad

EXAMPLE 6: Show that the sequence converges and find its limit.
$c_{n}=(-1)^{n} \frac{1}{n!}$

Definition: Monotonic Sequence

A sequence $\left\{a_{n}\right\}$ is when its terms are
$a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots$ or when its terms are nonincreasing

Definition: Bounded Sequence

1. A sequence $\left\{a_{n}\right\}$ is \qquad above when there is a real number
\qquad such that $a_{n} \leq M$ for all \qquad . The number \qquad is called an
\qquad of the sequence.
2. A sequence $\left\{a_{n}\right\}$ is bounded \qquad when there is a real number ___ such that $N \leq a_{n}$ for all \qquad . The number \qquad is called a
\qquad bound of the sequence.
3. A sequence \qquad is \qquad when it is bounded
\qquad and \qquad below.

Theorem: Bounded Monotonic Sequences

If a sequence $\left\{a_{n}\right\}$ is \qquad and \qquad , it

EXAMPLE 7: Determine whether the sequence with the given nth term is monotonic and whether it is bounded.
$a_{n}=\frac{\cos n}{n}$

EXAMPLE 8: Fibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair which becomes productive at age 2 months. If we start with one newborn pair, how many pairs of rabbits will we have in the nth month?

9.2: Series and Convergence

When you finish your homework you should be able to...
π Understand and represent a convergent infinite series.
π Use properties of infinite geometric series.
π Use the nth term test for divergence.

We spent the last section checking out \qquad , and ascertaining whether a given sequence, a_{n}, \qquad or \qquad as \qquad . Remember, the \qquad of a sequence are represented as a \qquad or \qquad which need not be ordered. There are finite and \qquad sequences. What if we were interested in
a sequence? If we are interested in summing a finite number, say n, of the \qquad of a sequence, we would be finding the \qquad
\qquad . If we are interesting in finding the sum of an infinite sequence, if it exists, we would be finding an \qquad sum, called an infinite \qquad , or just a \qquad .

Our main interest will be to ascertain whether a series \qquad or

EXAMPLE 1: Consider the sequence we found above.
a. Write the first five terms, and the nth term of the sequence.
b. Sum the first five terms.
c. Represent this $5^{\text {th }}$ partial sum as a summation.
d. Find the limit of the sequence.
e. Find an expression for the nth partial sum.
f. What must the limit of this expression equal?

Definition: Convergent and Divergent Series

For the infinite series $\sum_{n=1}^{\infty} a_{n}$, The ___ sum is

If the sequence of partial sums $\left\{S_{n}\right\}$ \qquad to S, then the series
$\sum_{n=1}^{\infty} a_{n}$ converges. The limit S is called the \qquad of the \qquad

If $\left\{S_{n}\right\}$ diverges, then the series \qquad .
So from our first example, $S=$ \qquad , and this series since the \qquad
\qquad sum \qquad .

GEOMETRIC SERIES:

Theorem: Convergence of a Geometric Series

A geometric series with \qquad converges to the sum
when \qquad . Otherwise, for \qquad the series
diverges.

EXAMPLE 2: Express the number as a ratio of integers.

$0 . \overline{46}$

EXAMPLE 3: Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ is convergent and find its sum.

EXAMPLE 4: Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

NOTE: The series in example 4 is called a \qquad series.

Theorem: Properties of Infinite Series
Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be convergent series, and let A, B, and c be real numbers.
If $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$, then the following series converge to the indicate sums.

1. $\sum_{n=1}^{\infty} c a_{n}=$ \qquad 2. $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=$
2. $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=$

EXAMPLE 5: Determine the convergence or divergence of the series. If the series converges, find its sum.

$$
\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}
$$

Theorem: Limit of the nth Term of a Convergent Series

If $\sum_{n=1}^{\infty} a_{n}$ converges, then .

Theorem: nth Term Test for Divergence
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$

EXAMPLE 6: Determine the convergence or divergence of the series. Explain.
a. $\sum_{n=1}^{\infty} \arctan n$
b. $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^{n}}$
c. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$

EXAMPLE 7: Find all values of x for which the series converges. For these values of x, write the sum as a function of x.
$\sum_{n=0}^{\infty} 5\left(\frac{x-2}{3}\right)^{n}$

EXAMPLE 8: A ball is dropped from a height of 16 feet. Each time it drops h feet, it rebounds 0.81 h feet. Find the total distance traveled by the ball.
9.3: The Integral Test, P-Series, and Harmonic Series

When you finish your homework you should be able to...
π Use the Integral Test to ascertain whether an infinite series converges or diverges.
π Determine whether a p-series converges or diverges.
π Use properties of harmonic series.
WARM-UP: Determine whether the improper integral converges or diverges. 1. $\int_{1}^{\infty} \frac{\ln x}{x^{3}} d x$
2. $\int_{1}^{\infty} \frac{1}{3^{x}} d x$
3. $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$

Theorem: The Integral Test

$$
\text { If } f \text { is } \begin{aligned}
& \text { is } \\
& x \geq 1 \text { and } a_{n}=f(n) \text {, then }
\end{aligned} \text { for }
$$

Either both \qquad or both \qquad
***NOTE: Our interest is whether the series converges or diverges as \qquad , so the index of the summation can start at some integer \qquad as opposed to a \qquad when we apply the integral test.

EXAMPLE 1: Determine the convergence or divergence of the series. Explain.
a. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
b. $\sum_{n=1}^{\infty} \frac{n}{n^{4}+2 n^{2}+1}$

P-Series and Harmonic Series

A harmonic series is the \qquad of sounds represented by \qquad waves in which the \qquad of each sound is an \qquad multiple of the \qquad frequency. Pythagoras and his students discovered this relationship between the \qquad and the \qquad of the
vibrating string. The most beautiful harmonies seemed to correspond with the simplest \qquad of \qquad numbers. Later mathematicians developed this idea into the \qquad series, where the \qquad in the
harmonic series correspond to the node on a \qquad string that produce \qquad of the fundamental frequency. So, \qquad is the fundamental frequency, \qquad is \qquad
times the fundamental frequency, and so on. In music, strings of the same
\qquad
\qquad , and \qquad and whose
\qquad form a harmonic series, produce \qquad tones. A general harmonic series is of the form \qquad .

The harmonic series is a special case of the \qquad , where \qquad .

Theorem: Convergence of p-Series
The p-series for \qquad and \qquad for \qquad

EXAMPLE 2: Determine the convergence or divergence of the series. Explain.
a. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
b. $1+\frac{1}{\sqrt[5]{4}}+\frac{1}{\sqrt[5]{9}}+\frac{1}{\sqrt[5]{16}}+\frac{1}{\sqrt[5]{25}}+\cdots$

9.4: Series Comparison Tests

When you finish your homework you should be able to...
π Use the Direct Comparison Test to ascertain whether an infinite series converges or diverges.
π Use the Limit Comparison Test to ascertain whether an infinite series converges or diverges.

WARM-UP: Determine whether the series converges or diverges.

1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$
2. $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$

Our Tests So Far...
nth Term Test for \qquad If \qquad the series
\qquad . If \qquad we need to \qquad further
\qquad !!!

Geometric Series is of the form \qquad If \qquad the series \qquad and its \qquad is \qquad

Otherwise, the series diverges.
Telescoping Series. Requires \qquad decomposition. The \qquad is the sum of the terms which do not out plus \qquad -
p-Series is of the form \qquad . If \qquad the series If \qquad the series
\qquad .

The Integral Test requires that \qquad is \qquad , continuous, and for $x \geq 1$, and $f(n)=a_{n}$ for all n. If \qquad
converges, \qquad converges. Otherwise, \qquad diverges.

Theorem: The Direct Comparison Test

Let ___ for all n.

1. If $\sum_{i=1}^{\infty} b_{n}$ _ converges.
2. If $\sum_{i=1}^{\infty} a_{n}$
E.

EXAMPLE 1: Determine the convergence or divergence of the series. Explain.
a. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$
b. $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}-1}$

Theorem: The Limit Comparison Test

NOTE: When choosing your comparison, you can disregard all but the \ldots powers of ___ So, if we are testing $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{5 n^{2}+2}$, our comparison series would be \qquad $=$ \qquad .

Proof:

EXAMPLE 2: Determine the convergence or divergence of the series. Explain.
a. $\sum_{n=1}^{\infty} \frac{n}{n^{4}+2 n^{2}+1}$
b. $\sum_{n=0}^{\infty} \frac{1+\sin n}{10^{n}}$

9.5: Alternating Series

When you finish your homework you should be able to...
π Use the Alternating Series Test to ascertain whether an infinite series converges or diverges.
π Use the Alternating Series Remainder to approximate the sum of an alternating series.
π Classify a convergent series as conditionally convergent or absolutely convergent.

WARM-UP: Determine whether the series converges or diverges.
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2)^{n+1}}$

Theorem: Alternating Series Test

Let _. The alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ and $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converge when both conditions below are met.
1.
2. for all n

NOTE: The second condition can be modified to require that \qquad for all ___ greater than some integer \qquad .

EXAMPLE 1: Determine the convergence or divergence of the series. Explain.
a. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2)^{n+1}}$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}$
c. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{n^{2}+4}$
d. $\sum_{n=1}^{\infty} \frac{1}{n} \cos n \pi$
e. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1)}{1 \cdot 4 \cdot 7 \cdot 10 \cdots(3 n-2)}$

Theorem: Alternating Series Remainder

If a convergent alternating series satisfies the condition $a_{n+1} \leq a_{n}$, then the
value of the ___ involved in
approximating the sum___ is less than or equal to the first
term.

EXAMPLE 2: Approximate the sum of the series by using the first six terms.
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{3^{n}}$

EXAMPLE 3: Determine the number of terms required to approximate the sum of the series with an error of less than 0.001.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!}$

Theorem: Absolute Convergence

If the series converges, then the series \qquad also converges.

Which of our examples would be an example of this theorem?

Definition of Absolute and Conditional Convergence

1. The series $\sum a_{n}$ is \qquad convergent when \qquad converges.
2. The series $\sum a_{n}$ is \qquad convergent when \qquad
converges but \qquad diverges.

EXAMPLE 4: Determine whether the series converges absolutely or conditionally, or diverges.
a. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{n^{2}}}$
b. $\sum_{n=1}^{\infty}(-1)^{n+1} \arctan n$
c. $\sum_{n=1}^{\infty} \frac{\sin \left[(2 n+1) \frac{\pi}{2}\right]}{n}$

9.6: The Ratio and Root Tests

When you finish your homework you should be able to...
π Use the Ratio Test to ascertain whether an infinite series converges or diverges.
π Use the Root Test to ascertain whether an infinite series converges or diverges.
π Review Tests for convergence and divergence of an infinite series.

Theorem: The Ratio Test

Let $\sum a_{n}$ be a series with \qquad terms.

1. The series $\sum a_{n}$ converges \qquad when \qquad
2. The series $\sum a_{n}$ diverges when \qquad or \qquad
3. The Ratio Test is \qquad when \qquad .

EXAMPLE 1: Determine the convergence or divergence of the series using the Ratio Test.
a. $\sum_{n=0}^{\infty}\left(\frac{2}{e}\right)^{n}$
b. $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
c. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{n(n+1)}$
d. $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(3 n)!}$

Theorem: The Root Test

1. The series $\sum a_{n}$ converges \qquad when \qquad
2. The series $\sum a_{n}$ diverges when or \qquad
3. The Root Test is \qquad when \qquad

EXAMPLE 2: Determine the convergence or divergence of the series using the Root Test.
a. $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$
b. $\sum_{n=1}^{\infty}\left(\frac{n-2}{5 n+1}\right)^{n}$
c. $\sum_{n=1}^{\infty}\left(\frac{\ln n}{n}\right)^{n}$
d. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}$

NOW IT'S UP TO YOU!!! DETERMINE WHETHER THE FOLLOWING

 INFINITE SERIES CONVERGE OR DIVERGE1. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdot 11 \cdots(3 n-1)}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{n+1}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
3. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{3}+3 n}}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
4. $\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{18^{n} n!(2 n-1)}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
5. $\sum_{n=1}^{\infty}\left(\frac{n}{500}\right)^{n}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
6. $\sum_{n=1}^{\infty} e^{-4 n}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
7. $\sum_{n=1}^{\infty} \frac{5^{n}-1}{6^{n}-1}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
8. $\sum_{n=1}^{\infty} \arctan n$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
9. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.
10. $\sum_{n=1}^{\infty} \frac{2^{n}}{4 n^{2}-1}$

Step 1: Identify the test(s) and conditions (if applicable).

Step 2: Run the test.

Step 3: Conclusion.

9.7: Taylor Polynomials

When you finish your homework you should be able to...
π Find Taylor and Maclaurin polynomial approximations of elementary functions.
π Use the remainder of a Taylor polynomial.

Some uses of the Taylor series for analytic functions include:

- The \qquad of the series can be used as of the entire function. Keep in mind that you need a sufficient amount of \qquad .
- \qquad and \qquad of power series
is \qquad since it can be done \qquad by term.
- \qquad operations can be done on the \qquad series \qquad . For example, \qquad formula
follows from Taylor series \qquad for \qquad
and \qquad functions. This result is important in the field
of \qquad analysis.
- \qquad using the first few terms of a Taylor series can
make otherwise \qquad problems possible for a restricted
\qquad .

To find a \qquad function \qquad that \qquad another function \qquad , we choose a number \qquad in the \qquad of \qquad at which \qquad . This approximating \qquad is said to be \qquad about \qquad or \qquad $a t$ \qquad . The evil plan is to find a polynomial whose \qquad looks like the graph of \qquad this point. If we require that the \qquad of the polynomial function is the \qquad as the slope of the \qquad $a t$ \qquad then we also have \qquad . Using these two requirements we can get a approximation of \qquad .

EXAMPLE 1: Consider $f(x)=\frac{x}{x+1}$.
a. Find a first-degree polynomial function $P_{1}(x)=a_{0}+a_{1} x$ whose value and slope agree with the value and slope of f at $x=0$.

x	-0.8	-0.2	-0.1	0	0.1	0.2	1.0
$\frac{x}{x+1}$							
$P_{1}(x)$							

b. Now find a second-degree polynomial function $P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$ whose value and slope agree with the value and slope of f at $x=0$.

x	-0.8	-0.2	-0.1	0	0.1	0.2
$\frac{x}{x+1}$	-4	-0.25	-0.1111	0	0.0909	0.16667
$P_{2}(x)$						

c. Let's go for a third-degree polynomial function $P_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ whose value and slope agree with the value and slope of f at $x=0$.

| x | -0.8 | -0.2 | -0.1 | 0 | 0.1 | 0.2 | 1.0 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\frac{x}{x+1}$ | -4 | -0.25 | -0.1111 | 0 | 0.0909 | 0.16667 | 0.5 |
| $P_{3}(x)$ | | | | | | | |

Definition of nth Taylor and nth Maclaurin Polynomial
If f has n derivatives at c, then the polynomial
is called the \qquad polynomial for \qquad $a \dagger$ \qquad .

If ___, then
is also called the \qquad polynomial for \qquad .

Remainder of a Taylor Polynomial

To \qquad the \qquad of approximating a function
value \qquad by the Taylor polynomial \qquad we use the concept of a

EXAMPLE 2: Consider the function $f(x)=x^{2} \cos x$.
a. Find the second Taylor polynomial for the function $f(x)=x^{2} \cos x$ centered at π.
b. Approximate the function at $x=\frac{7 \pi}{8}$ using the polynomial found in part a.

Taylor's Theorem

If a function f is differentiable through order $n+1$ in an interval I containing c then, for each x in I, there exists z between X and C such that

where

A \qquad of this theorem is that
where \qquad is the \qquad value of \qquad
between \qquad and \qquad .

For \qquad we have

Does this look familiar?

EXAMPLE 3: Use Taylor's Theorem to obtain an upper bound for error of the approximation. Then calculate the exact value of the error.
$e \approx 1+1+\frac{1^{2}}{2!}+\frac{1^{3}}{3!}+\frac{1^{4}}{4!}+\frac{1^{5}}{5!}$

EXAMPLE 4: Determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001.
$\cos (0.1)$

9.8: Power Series

When you finish your homework you should be able to...
π Find the radius and interval of convergence of a power series.
π Determine the endpoint convergence of a power series.
π Differentiate and integrate a power series.
WARM-UP: Find the sixth-degree Maclaurin polynomial for $f(x)=e^{x}$.

This enables us to be able to \qquad the function
\qquad near \qquad We found out that the higher the \qquad of the approximating \qquad , the better the approximation becomes.

In this section, you'll see that several important \qquad can be represented \qquad by \qquad series.

Definition of Power Series

If X is a variable, then an infinite series of the form
is called a \qquad series \qquad $a t$ \qquad where \qquad is a constant.

If a power series is \qquad at \qquad , the power series will be of the form

EXAMPLE 1: Find the power series for $f(x)=e^{x}$, centered at $x=0$.

Radius and Interval of Convergence

A power series in \qquad can be thought of as a \qquad of \qquad .

The \qquad of \qquad is the \qquad of all \qquad for which the power series \qquad . Every power series converges at its \qquad .

Therefore, \qquad is always in the \qquad of \qquad . The domain of a power series can take on any one of the following forms:

the \qquad of \qquad numbers

Theorem: Convergence of a Power Series

For a power series centered at C, precisely one of the following is true:

1. The series converges only at \qquad .
2. There exists a \qquad number \qquad such that the series converges for \qquad and diverges for
\qquad .
3. The series converges absolutely for \qquad .

Endpoint Convergence

Each \qquad must be \qquad for \qquad or
.This results in \qquad possible forms an \qquad
of \qquad can take on.
\qquad 0

\qquad

Example 2: Find the radius and interval of convergence (including a check for convergence at the endpoints) of the following power series.
a. $\sum_{n=0}^{\infty}(2 x)^{n}$
b. $\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(2 n)!}$
c. $\sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1) 4^{n+1}}$

Theorem: Properties of Functions Defined by Power Series

If the function \qquad
has a radius of convergence of \qquad , then, on the interval
f is \qquad and thus \qquad The derivative and
antiderivative are given below:
1.
2.

The radius of convergence of the series obtained by \qquad
or \qquad a power series is the \qquad as that of
the \qquad power series. What may change is the of convergence.

Example 3: Let $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ and $g(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$.
a. Find the interval of convergence of f.
b. Find the interval of convergence of g.
c. Show that $f^{\prime}(x)=g(x)$.
d. Show that $g^{\prime}(x)=-f(x)$.
e. Identify the function f.
f. Identify the function g.

Example 4: Write an equivalent series with the index of summation beginning at $n=1$.
a. $\sum_{n=0}^{\infty}(-1)^{n+1}(n+1) x^{n}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$

9.9: Representing Functions as Power Series

When you finish your homework you should be able to...
π Manipulate a geometric series to represent a function as a power series
π Differentiate or integrate a geometric series to represent a function as a power series.

WARM-UP: Find the infinite sum of the convergent series $\sum_{n=0}^{\infty} 5\left(-\frac{3}{4}\right)^{n}$.

Now consider the function $f(x)=\frac{1}{1-x}$.

This represents $f(x)=\frac{1}{1-x}$ only on the interval from What is the domain of f ? \qquad .

How would we represent f on another interval? We must develop a
\qquad which is \qquad at a different
value.
Example 1: Find the power series for $f(x)=\frac{1}{1-x}$ centered at $c=-2$.

Example 2: Find a geometric power series for the function $f(x)=\frac{2}{5-x}$ centered at $0,(a)$ by manipulating the function into the format of a geometric power series and (b) by using long division.

Example 3: Find a power series for the function, centered at c, and determine the interval of convergence.
a. $f(x)=\frac{3}{2 x-1}, c=2$
b. $f(x)=\frac{4}{3 x-2}, c=3$

Operations with Power Series

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be power series centered at 0 .

1. $f(k x)=\sum_{n=0}^{\infty} a_{n} k^{n} x^{n}$, where \qquad is a \qquad .
2. $f\left(x^{N}\right)=\sum_{n=0}^{\infty} a_{n} x^{n N}$, where \qquad is a \qquad .
3. $f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right)$

Note: These operations can change the \qquad of \qquad for the resulting series.

Example 4: Find a power series for the function, centered at c, and determine the interval of convergence.
a. $f(x)=\frac{5}{5+x^{2}}, c=0$
b. $f(x)=\frac{3 x-8}{3 x^{2}+5 x-2}, c=0$

Example 5: Consider the functions $f(x)=\frac{1}{1+x}$ and $g(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.
a. Find a power series for f, centered at 0 .
b. Use your result from part a to determine a power series, centered at 0 , for the function $h(x)=\frac{x}{x^{2}-1}=\frac{1}{2(1+x)}-\frac{1}{2(1-x)}$. Identify the interval of convergence.
c. Use your result from part a to determine a power series, centered at 0, for the function $r(x)=\frac{2}{(x+1)^{3}}$. Identify the interval of convergence.
d. Use your result from part a to determine a power series, centered at 0, for the function $s(x)=\ln \left(1-x^{2}\right)$. Identify the interval of convergence.

9.10: Taylor and Maclaurin Series

When you finish your homework you should be able to...
π Find a Taylor series or a Maclaurin series for a function.
π Find a binomial series.
π Use a basic list of Taylor series to derive other power series.
WARM-UP: Find the $8^{\text {th }}$ degree Maclaurin polynomial for the function $f(x)=\cos x$.

Now let's see if we can form a power series!

What about that interval of convergence?

Theorem: The Form of a Convergent Power Series

If f is represented by a power series $f(x)=\sum a_{n}(x-c)^{n}$ for all x in an open interval I containing c, then
and

Definition of Taylor and Maclaurin Series

If a function f has derivatives of all orders at $x=c$, then the series
is called the \qquad series for \qquad $a t$ \qquad If \qquad then the series is the \qquad series for \qquad .

Example 1: Find the Taylor series, centered at c, for the function.
a. $f(x)=e^{-4 x}, c=0$
b. $f(x)=\frac{1}{1-x}, c=2$

Theorem: Convergence of Taylor Series
If $\lim _{n \rightarrow \infty} R_{n}=0$ for all x in the interval I, then the Taylor series for f converges and equals $f(x)$.

Example 2: Prove that the Maclaurin series for $f(x)=\cos x$ converges to $f(x)$ for all x.

Binomial Series

Let's check out the function $f(x)=(1+x)^{k}$, where k is a rational number. What do you think the Maclaurin series is for this function? Guess what... YOU KNOW HOW TO FIND IT!!! So, on your mark, get set, GO!

1. \qquad $f(x)$ a bunch of times and evaluate each
\qquad
at \qquad . Evil plan: \qquad a
2. Determine the \qquad of \qquad ...Don't forget to test the !

Guidelines for Finding a Power Series

1.

\qquad each
\qquad $a t$ \qquad until you find a \qquad .
2. Form the \qquad coefficient \qquad , and determine the \qquad of convergence for the
series.
3. Determine whether the series \qquad to \qquad within
the interval of convergence.
Example 3: Find the Maclaurin series for the function using the binomial series.
a. $f(x)=\frac{1}{(1+x)^{4}}$
b. $f(x)=\sqrt{1+x^{3}}$

A Basic List of Power Series for Elementary Functions

FUNCTION	INTERVAL OF CONVERGENCE
$\frac{1}{x}=$	$0<x<2$
$\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots+(-1)^{n} x^{n}+\cdots$	$-1<x<1$
$\ln x=$	$0<x \leq 2$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+\frac{x^{n}}{n!}+\cdots$	$-\infty<x<\infty$
$\operatorname{cin} x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots$	$-\infty<x<\infty$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots$	$-\infty<x<\infty$
$\arctan x=$	$-1 \leq x \leq 1$
$\arcsin x=$	$-1 \leq x \leq 1$
$(1+x)^{k}=1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{3!}+\cdots$	$-1<x<1^{*}$

*convergence at endpoints depends on k

Example 4: Find the Maclaurin series for the function using the basic list of power series for elementary functions.
a. $f(x)=\ln \left(1+x^{2}\right)$
b. $f(x)=e^{x}+e^{-x}$
c. $f(x)=\cos ^{2} x$
d. $f(x)=x \cos x$

Example 5: Find the first four nonzero terms of the Maclaurin series for the function $f(x)=e^{x} \ln (1+x)$.

Example 6: Use a power series to approximate the value of the integral with an error less than 0.0001.
$\int_{0}^{1 / 2} \arctan x^{2} d x$

7.4: Arc Length and Surfaces of Revolution

When you finish your homework you should be able to...
π Find the arc length of a smooth curve.
π Find the area of a surface of revolution

Arc length is approximated by \qquad infinitely many \qquad .

A \qquad curve is one which has a \qquad arc length. A
sufficient condition for the graph of a function \qquad to be rectifiable between
\qquad and \qquad is that \qquad be continuous on \qquad . A
function of this type is considered to be \qquad differentiable on \qquad and its graph on the interval \qquad is a \qquad .

Definition of Arc Length

Let the function \qquad represent a smooth curve on the interval

The arc length of ___ between ___ and ___ is

For a smooth curve \qquad on the interval \qquad the arc length of \qquad between ___ and ____ is

EXAMPLE 1: Find the arc length from $(-3,4)$ clockwise to $(4,3)$ along the circle $x^{2}+y^{2}=25$. Show that the result is one-fourth the circumference of a circle.

Definition of Surface of Revolution

When the graph of a continuous function is \qquad about a \qquad ,the resulting surface is a \qquad of \qquad .

Definition of the Area of a Surface of Revolution
Let the function___ have a continuous derivative on the interval
graph of ___ about a horizontal or vertical axis is the surface of revolution formed by revolving the
where \qquad is the distance between the graph of \qquad and the axis of revolution. If \qquad on the interval \qquad then the surface area is
where \qquad is the distance between the graph of \qquad and the axis of revolution

EXAMPLE 2: Find the area of the surface generated by revolving the curve $y=9-x^{2}$ about the y-axis.

10.1: Conics and Calculus

When you finish your homework you should be able to...
π Use properties of conic sections to analyze and write equations of parabolas, ellipses, and hyperbolas.
π Classify the graph of an equation of a conic section as a circle, parabola, ellipse, or hyperbola.
π Find the equations of lines tangent and normal to conic sections

The graph of each type of \qquad section can be described as the intersection of a plane and two identical \qquad which are connected at their vertices.

A parabola is the set of all
\qquad that are
\qquad from a fixed line called the \qquad and a fixed
point called the \qquad .

Theorem: Standard Equation of a Parabola
The standard form of a parabola with vertex \qquad and directrix \qquad is

Vertical axis

The standard form of a parabola with vertex \qquad and directrix \qquad is

The focus lies on the axis \qquad units from the vertex. The coordinates of the focus are

Vertical axis

Horizontal Axis

EXAMPLE 1: Consider $y^{2}+6 y+8 x+25=0$.
a. Find the vertex, focus, and the directrix of the parabola and sketch its graph.

b. Find the equation of the line tangent to the graph at $x=-4$.

An ellipse is the set of all \qquad the sum of whose distances from two distinct fixed points called \qquad is constant.

Theorem: Standard Equation of an Ellipse
The standard form of the equation of an ellipse with center \qquad and major and minor axes of lengths \qquad and \qquad where \qquad is

Major Axis is Horizontal
or

Major Axis is Vertical

The foci lie on the major axis, \qquad units from the center, with

Theorem: Reflective Property of an Ellipse

Let \qquad be a point on an ellipse. The tangent line to the ellipse at point \qquad makes \qquad angles with the lines through \qquad and the \qquad .

Definition of Eccentricity of an Ellipse

The \qquad of an ellipse is given by the ratio

For an ellipse that is close to being a \qquad the foci are close to the \qquad and the \qquad is close
to \qquad .An \qquad ellipse has foci which are close to the \qquad and the \qquad is close to \qquad

EXAMPLE 2: Consider $16 x^{2}+25 y^{2}-64 x+150 y+279=0$.
Find the center, foci, vertices, and eccentricity of the ellipse and sketch its graph.

EXAMPLE 3: Find an equation of the ellipse with vertices $(0,3)$ and $(8,3)$ and eccentricity $\frac{3}{4}$.

A hyperbola is the set of all \qquad for which the absolute value of the difference between the distances from two distinct fixed points called \qquad is constant. The line \qquad connecting the vertices is the \qquad
\qquad , and the
\qquad of the transverse axis is the \qquad of the
hyperbola.

Theorem: Standard Equation of a Hyperbola The standard form of the equation of a hyperbola with center \qquad is

Transverse Axis is Horizontal
or

Transverse Axis is Vertical

The vertices are \qquad units from the center, and the foci are \qquad units from the center with \qquad

Theorem: Asymptotes of a Hyperbola

Transverse Axis is Horizontal

EXAMPLE 4: Consider $\frac{y^{2}}{4}-\frac{x^{2}}{2}=1$.
a. Find the center, foci, and vertices of the hyperbola, and sketch its graph using asymptotes.

b. Find equations for the tangent lines to the hyperbola at $x=4$.
c. Find equations for the normal lines to the hyperbola at $x=4$.

EXAMPLE 4: A cable of a suspension bridge is suspended in the shape of a parabola between two towers that are 120 meters apart and 20 meters above the roadway. The cable touches the roadway midway between the two towers.
a. Find an equation for the parabolic shape of the cable.
b. Find the length of the cable.

10.2: Plane Curves and Parametric Equations

When you finish your homework you should be able to...
π Sketch the graph of a curve given by a set of parametric equations.
π Eliminate the parameter in a set of parametric equations.
π Find a set of parametric equations to represent a curve.

We currently use a \qquad equation involving \qquad variables to represent a \qquad . This tells us \qquad an object has been but it doesn't tell us \qquad the object was at a given \qquad
\qquad . To determine this \qquad , we introduce a third variable, \qquad , called a \qquad . Using two equations to represent each \qquad and \qquad as
functions of \qquad gives us \qquad
\qquad .

Definition of a Plane Curve

EXAMPLE 1: Consider $x=2 t^{2}, y=t^{4}+1$.
a. Sketch the curve represented by the parametric equations. Be sure to indicate the orientation.
$t \quad x=2 t^{2} \quad y=t^{4}+1$

b. Write the corresponding rectangular equation by eliminating the parameter.

EXAMPLE 2: Consider $x=\cos \theta, y=2 \sin 2 \theta$.
a. Use your graphing calculator to sketch the curve represented by the parametric equations. Be sure to indicate the orientation.
b. Write the corresponding rectangular equation by eliminating the parameter.

EXAMPLE 3: Consider $x=-2+3 \cos \theta, y=-5+3 \sin \theta$.
a. Sketch the curve represented by the parametric equations. Be sure to indicate the orientation.
$\theta \quad x=-2+3 \cos \theta \quad y=-5+3 \sin \theta$

b. Write the corresponding rectangular equation by eliminating the parameter.

EXAMPLE 4: Consider $x=e^{2 t}, y=e^{t}$.
a. Use your graphing calculator to sketch the curve represented by the parametric equations. Be sure to indicate the orientation.
b. Write the corresponding rectangular equation by eliminating the parameter.

EXAMPLE 5: Find a set of parametric equations for the line or conic.
a. Circle: Center $(-6,2)$, radius 4
b. Ellipse: Vertices $(4,7),(4,-3)$, Foci: $(4,5),(4,-1)$.

10.3: Plane Curves and Parametric Equations

When you finish your homework you should be able to...
π Find the slope of a line tangent to a plane curve.
π Find the arc length of a plane curve.
π Find the area of a surface of revolution given in parametric form.
Theorem: Parametric Form of the Derivative
If a smooth curve C is given by the equations
then the slope of C at \qquad is

EXAMPLE 1: Consider $x=4 \cos t, y=2 \sin t, 0<t<2 \pi$.
a. Find $\frac{d y}{d x}$.
b. Find $\frac{d^{2} y}{d x^{2}}$.
c. Find all points (if any) of horizontal and vertical tangency to the curve.
d. Determine the open t-intervals on which the curve is concave downward or concave upward.

Theorem: Arc Length in Parametric Form

If a smooth curve C is given by the equations \qquad and \qquad such that C does not intersect itself on the interval \qquad , except possibly at the endpoints, then the arc length of C over the interval is given by

NOTE: Make sure that the arc length is \qquad only once on the interval!!!

EXAMPLE 2: Find the arc length of the curve given by the equations $x=\arcsin t$ and $y=\ln \sqrt{1-t^{2}}$ on the interval $0 \leq t \leq \frac{1}{2}$.

Theorem: Area of a Surface of Revolution

If a smooth curve C is given by the equations \qquad and \qquad such
that C does not intersect itself on the interval \qquad then the area S
of the surface of revolution formed by revolving C about the coordinate axes is given by Revolution about the x-axis; \qquad

Revolution about the y-axis; \qquad

EXAMPLE 3: Find the area of the surface generated by revolving the curve given by the equations $x=5 \cos \theta$ and $y=5 \sin \theta$ on the interval $0 \leq \theta \leq \pi$ about the y axis.

EXAMPLE 4: A portion of a sphere of radius r is removed by cutting out a circular cone with its vertex at the center of the sphere. The vertex of the cone forms an angle of 2θ. Find the surface area removed from the cone.

10.4: Polar Coordinates and Graphs

When you finish your homework you should be able to...
π Convert between rectangular and polar coordinates.
π Sketch the graph of an equation in polar form.
π Find the slope of a line tangent to the pole.
π Identify special polar graphs.

Up to this point, we've been using the \qquad coordinate system to
sketch graphs. Now we will be using the \qquad coordinate system to sketch graphs given in \qquad form. This form is very useful in the third semester calculus course as it makes many definite \qquad easier to evaluate after switching from rectangular to polar coordinates. The polar coordinate system has a fixed point O, called the \qquad or \qquad .

From the pole, an initial \qquad is constructe. This is called the \qquad axis. Each point P in the plane is assigned \qquad coordinates in the form
\qquad . \qquad represents the \qquad distance from \qquad to \qquad and
\qquad is the \qquad angle which is \qquad
from the polar axis to the segment \qquad Unlike rectangular coordinates, each point in polar coordinates does NOT have a \qquad representation. Can you
figure out another point in polar coordinates which would be equivalent to
\qquad How about $(-r, \theta+\pi)$? \qquad

In general, the point (r, θ) can be written as
where \qquad is any integer. The pole is represented by \qquad where
\qquad is any angle.

Theorem: Coordinate Conversion
The polar coordinates (r, θ) of a point are related to the rectangular coordinates of the point as follows:

Polar-to-Rectangular Rectangular-to-Polar

EXAMPLE 1: Plot the point in polar coordinates and find the corresponding rectangular coordinates for the point.
a. $\left(3, \frac{\pi}{4}\right)$
b. $\left(-2, \frac{5 \pi}{3}\right)$

EXAMPLE 2: Find two corresponding polar coordinates for the point given in rectangular coordinates.
a. $\left(3, \frac{\pi}{4}\right)$
b. $\left(-6, \frac{\pi}{2}\right)$

EXAMPLE 3: Sketch the graph of the polar equation, and convert to rectangular form.
a. $r=-4$

b. $\theta=\frac{5 \pi}{6}$

c. $r=3 \sin \theta$

d. $r=\cot \theta \csc \theta$

EXAMPLE 4: Convert the rectangular equation to polar form.
a. $x^{2}-y^{2}=9$
b. $x y=4$

Consider $x=r \cos \theta=f(\theta) \cos \theta$ and $y=r \sin \theta=f(\theta) \sin \theta$.

Theorem: Slope in Polar Form

If f is a differentiable function of θ, then the slope of the tangent line to the graph of $r=f(\theta)$ at the point (r, θ) is
provided that \qquad $a \dagger$ \qquad .

HMMMMM...I guess that means...
Solutions of $\frac{d y}{d \theta}=0$ yield ___ tangents, provided $\frac{d x}{d \theta} \neq 0$.
Solutions of $\frac{d x}{d \theta}=0$ yield ___ tangents, provided $\frac{d y}{d \theta} \neq 0$.
If $\frac{d y}{d \theta}=0$ and $\frac{d x}{d \theta}=0$ simultaneously, then no conclusion can be drawn about
\qquad lines.

Theorem: Tangent Lines at the Pole

$$
\begin{aligned}
& \text { If } f(\alpha)=0 \text { and } f^{\prime}(\alpha) \neq 0 \text {, then the line } f(\alpha)=0 \text { is___ at the } \\
& \text { to the graph of }
\end{aligned}
$$

EXAMPLE 5: Consider $r=2(1-\sin \theta)$. Hint: use $\frac{\pi}{24}$ for the increment between the values of θ.
a. Sketch the graph of the equation.

b. Find $\frac{d y}{d x}$.
c. Find all points (if any) of horizontal and vertical tangency to the curve.
d. Find the tangents at the pole.

EXAMPLE 6: Consider $f(\theta)=8 \cos 3 \theta$.
a. Graph the equation by hand.

b. Find $\frac{d y}{d x}$.
c. Find all points (if any) of horizontal and vertical tangency to the curve.
d. Find the tangents at the pole.
10.5: Area and Arc Length in Polar Coordinates

When you finish your homework you should be able to...
π Find the points of intersection between polar graphs.
π Find the area of a region bounded by a polar graph.
π Find the arc length of a polar graph.
π Find the area of a surface of revolution (polar form)
To find the points of \qquad of polar graphs, you merely
\qquad the \qquad of \qquad equations.

EXAMPLE 1: Find the points of intersection of the graphs of the equations $r=3(1+\sin \theta)$ and $r=3(1-\sin \theta)$.

The formula for the \qquad of a \qquad region is developed by infinitely many \qquad of \qquad Recall that the area of a sector is \qquad .

Theorem: Area in Polar Coordinates
If f is continuous and nonnegative on the interval $[\alpha, \beta], 0<\beta-\alpha \leq 2 \pi$, then the area of the region bounded by the graph of $r=f(\theta)$ between the radial lines $\theta=\alpha$ and $\theta=\beta$ is

$$
0<\beta-\alpha \leq 2 \pi
$$

EXAMPLE 2: Find the area of the region of one petal of $r=4 \sin 3 \theta$.

EXAMPLE 3: Find the area of the region of the interior of $r=4-4 \cos \theta$.

EXAMPLE 4: Find the area of the common interior of $r=2(1+\cos \theta)$ and $r=2(1-\cos \theta)$.

Theorem: Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ is

EXAMPLE 5: Find the arc length of the curve $r=8(1+\cos \theta)$ over the interval $0 \leq \theta \leq 2 \pi$.

Theorem: Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The area of the surface formed by revolving the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ about
the polar axis is:
the line $\theta=\frac{\pi}{2}$ is:

EXAMPLE 6: Find the area of the surface formed by revolving the curve $r=6 \cos \theta$ about the polar axis over the interval $0 \leq \theta \leq \frac{\pi}{2}$.

